1 The Distance Product

Last time we defined the distance product of $n \times n$ matrices:

$$
(A \star B)[i, j]=\min _{k} A(i, k)+B(k, j)
$$

Theorem 1.1. Given two $n \times n$ matrices A, B over $\{-M, M\}, A \star B$ can be computed in $\tilde{O}\left(M n^{\omega}\right)$ time.

2 Oracle for All-Pairs Shortest Paths

Theorem 2.1 (Yuster, Zwick '05). Let G be a directed graph with edge weights in $\{-M, M\}$ and no negative cycles. Then in $\tilde{O}\left(M n^{\omega}\right)$ time, we can compute an $n \times n$ matrix D such that for every $u, v \in V$, w.h.p.:

$$
(D \star D)[u, v]=d(u, v)
$$

Note that this does not immediately imply a fast APSP algorithm, because D may have large entries, making computing $D \star D$ expensive.

Corollary 2.1. Let $G=(V, E)$ be a directed graph with edge weights in $\{-M, M\}$ and no negative cycles. Let $s \in V$. Then single-source shortest path from s can be computed in $\tilde{O}\left(M n^{\omega}\right)$ time.
Proof. By Theorem 2.1, we can compute an $n \times n$ matrix D such that $D \star D$ is the correct all-pairs shortestpaths matrix, in $O\left(M n^{\omega}\right)$ time.

Then for all $v \in V$, we know that:

$$
d(s, v)=\min _{k} D[s, k]+D[k, v]
$$

Computing this for all $v \in V$ only takes $O\left(n^{2}\right)$ time. Since $\omega \geq 2$, this entire computation is in $O\left(M n^{\omega}\right)$ time.

Similarly, we can show that detecting negative cycles is fast since any negative cycle contains a simple cycle of negative weight, and thus corresponds to a path from i to i for some i of length $\leq n$.

Corollary 2.2. Let G be a directed graph with edge weights in $\{-M, M\}$. Then negative cycle detection can be computed in $\tilde{O}\left(M n^{\omega}\right)$ time.

We now prove our main theorem:
Proof of Theorem 2.1. Let $\ell(u, v)$ be the number of nodes on a shortest u to v path. Additionally, for notational convenience, suppose that A is an $n \times n$ matrix and that $S, T \subseteq\{1, \ldots, n\}$. Then $A[S, T]$ is the submatrix of A consisting of rows indexed by S and columns indexed by T.

We claim that Algorithm 1 is our desired algorithm.
Running Time: In iteration j, we multiply an $n \times \tilde{O}\left(\frac{n}{(3 / 2)^{j-1}}\right)$ matrix by a $\tilde{O}\left(\frac{n}{(3 / 2)^{j-1}}\right) \times \tilde{O}\left(\frac{n}{(3 / 2)^{j}}\right)$ matrix, where all entries are at most $(3 / 2)^{j} M$ (we will show iteration j only needs to consider paths with at most ($3 / 2)^{j}$ nodes).

```
Algorithm 1: YZ( \(A\) )
    \(A\) is a weighted adjacency matrix;
    Set \(D \leftarrow A\);
    Set \(B_{0} \leftarrow V\);
    for \(j=1, \ldots, \log _{3 / 2} n\) do
        Let \(D^{\prime}\) be \(D\) but with all entries larger than \(M(3 / 2)^{j}\) replaced by \(\infty\);
        Choose \(B_{j}\) to be a random subset of \(B_{j-1}\) of size \(S_{j}=\frac{c \cdot n}{(3 / 2)^{j}} \log n\);
        Compute \(D_{j} \leftarrow D^{\prime}\left[V, B_{j-1}\right] \star D^{\prime}\left[B_{j-1}, B_{j}\right]\);
        Compute \(\bar{D}_{j} \leftarrow D^{\prime}\left[B_{j}, B_{j-1}\right] \star D^{\prime}\left[B_{j-1}, V\right]\);
        foreach \(u \in V, b \in B_{j}\) do
            Set \(D[u, b]=\min \left(D[u, b], D_{j}[u, b]\right)\);
            Set \(D[b, u]=\min \left(D[b, u], \bar{D}_{j}[b, u]\right)\);
    return D ;
```

Hence the runtime for iteration j is $\tilde{O}\left(M(3 / 2)^{j}(3 / 2)^{j}\left(\frac{n}{(3 / 2)^{j}}\right)^{\omega}\right)=\tilde{O}\left(\frac{M n^{\omega}}{(3 / 2)^{j(\omega-2)}}\right)$. Over all iterations, the running time is, asymptotically, ignoring polylog factors,

$$
M n^{\omega} \sum_{j}\left((3 / 2)^{\omega-2}\right)^{j} \leq \tilde{O}\left(M n^{\omega}\right)
$$

If $\omega>2$, one of the \log factors in the \tilde{O} can be omitted.
Correctness: We will prove the correctness by proving two claims.
Claim 1: For all $j=0, \ldots, \log _{3 / 2} n, v \in V, b \in B_{j}$, if $\ell(v, b)<(3 / 2)^{j}$ then w.h.p. after iteration j, $D[v, b]=d(v, b)$

Proof of Claim 1: We will prove it via induction. The base case $(j=0)$ is trivial, since the distance is for one-hop paths is exactly the adjacency matrix. Now, assume the inductive hypothesis is true for $j-1$. Consider some $v \in V$ and $b \in B_{j}$. We consider two possible cases:

Case I: $\quad \ell(v, b)<(3 / 2)^{j-1}$
But then $b \in B_{j} \subset B_{j-1}$. By our inductive hypothesis, $D[v, b]=d(v, b)$ w.h.p.!
Case II: $\ell(v, b) \in\left[(3 / 2)^{j-1},(3 / 2)^{j}\right)$
We will need to use our "middle third" technique.

We can choose $c, d \in V$ such that:

$$
\begin{aligned}
& \ell(v, c)<\frac{1}{3}\left(\frac{3}{2}\right)^{j} \\
& \ell(d, b)<\frac{1}{3}\left(\frac{3}{2}\right)^{j} \\
& \ell(c, d)=\frac{1}{3}\left(\frac{3}{2}\right)^{j}<\left(\frac{3}{2}\right)^{j-1}
\end{aligned}
$$

By a hitting set argument, if c is a large enough constant, $B_{j-1} \cap$ "middle third" $\neq \varnothing$ (w.h.p. depending on $c)$ since $\left|B_{j-1}\right|=c \frac{n}{(3 / 2)^{j}} \log n$.

Let x in $B_{j-1} \cap$ "middle third". Then $\ell(v, x) \leq \ell(v, c)+\ell(c, d) \leq \frac{2}{3}\left(\frac{3}{2}\right)^{j}=\left(\frac{3}{2}\right)^{j-1}$. Since $x \in B_{j-1}$, by induction $D[v, x]=d(v, x)$ w.h.p. at iteration j. By a similar argument we get that w.h.p. $D[x, b]=d(x, b)$ at iteration j.

Hence after this iteration, $D[v, b] \leq D[v, x]+D[x, b]=d(v, b)$.
As a small technical note, we will need to actually remove entries larger than $(3 / 2)^{j} M$ from D before multiplying, but they are not needed.

Claim 2: For all $u, v \in V$, w.h.p. $(D \star D)[u, v]=d(u, v)$.
Proof of Claim 2: Fix $u, v \in V$, and let j be such that $\ell(u, v) \in\left[(3 / 2)^{j-1},(3 / 2)^{j}\right)$. Look at a shortest path between u and v. Its middle third hence has a length of $(1 / 3)(3 / 2)^{j}$.

But then w.h.p. B_{j} hits this path at some $x \in V$ such that $\ell(u, x), \ell(x, v) \leq(3 / 2)^{j-1}$. By Claim 1, $D(u, x)=d(u, x)$ and $D(x, b)=d(x, b)$. Hence:

$$
d(u, v) \leq(D \star D)[u, v] \leq \min _{x \in B_{j-1}} D(u, x)+D(x, v) \leq d(u, v)
$$

This completes the proof.

3 Node-Weighted All-Pairs Shortest Paths

Here we prove a theorem by Chan [Cha10].
Theorem 3.1. APSP with node weights can be computed in $O\left(n^{\frac{9+\omega}{4}}\right)$ or $O\left(n^{2.84}\right)$ time.
The idea is to compute long paths ($>s$ hops) via a hitting set argument and running multiple calls to Dijkstra's algorithm, in a running time of $\tilde{O}\left(\frac{n^{3}}{s}\right)$. Then, handle short paths ($\leq s$ hops) in $O\left(s n^{\frac{3+\omega}{2}}\right.$) time via a specialized matrix multiplication.

Let G be a directed graph with node weights $w: V \rightarrow Z$. Suppose we just wanted to compute distances over paths of length two.

Let A be the unweighted adjacency matrix. Notice that $d_{2}(u, v)=w(u)+w(v)+\min \{w(j) \mid A[u, j]=$ $A[j, v]=1\}$.

Suppose we made two copies of A, and sorted one's columns by $w(j)$ in nondecreasing order, and the others rows by $w(j)$ in nondecreasing order.

Then it would suffice to compute $\min \{j \mid A[i, j]=A[j, k]=1\}$, or the "minimum witnesses" matrix product. We use an algorithm provided by Kowaluk and Lingas [KL05]:

Lemma 3.1 (Kowaluk, Lingas '05). Minimum witnesses of $A, B\left(n \times n\right.$ matrices) is in $O\left(n^{2.616}\right)$ or $O\left(n^{2+\frac{1}{4-\omega}}\right)$ time.

Note that this algorithm has been improved on by Czumaj, Kowaluk, and Lingas [CKL07].
Proof. Let p be some parameter that we will choose later. Bucket A by columns into buckets of size p. Bucket B by rows into buckets of size p.

For every bucket $b \in\left\{1, \ldots, \frac{n}{p}\right\}$, compute $A_{b} \cdot B_{b}$ (boolean matrix product). This takes $O\left(\left(\frac{n}{p}\right)^{2} p^{\omega}\right)$ time each, or $O\left(n^{2} p^{\omega-2}\right)$ time each. But there are $\frac{n}{p}$ of these, so this takes $O\left(\frac{n^{3}}{p^{3-\omega}}\right)$ time total.

Then for all $i, j \in\left\{1, \ldots, \frac{n}{p}\right\}$, do the following. Let $b_{i j}$ be the smallest b such that $\left(A_{b} \cdot B_{b}\right)[i, j]=1$. Hence we can just try all the choices of k in bucket $b_{i j}$, and return the smallest k such that $A_{b}[i, k] B_{b}[k, j]=1$. This is just n^{2} exhaustive searches, so this step runs in $O\left(n^{2} p\right)$ time.

Setting these equal and balancing, we get that we should set $p=n^{\frac{1}{4-\omega}}$ to make the overall time $O\left(n^{2+\frac{1}{4-\omega}}\right)$.

How can we compute distances for paths that are longer than two hops? For each $\ell \leq s$, we want to compute D_{ℓ} such that:

$$
\begin{aligned}
& D_{\ell}[u, v]=d(u, v)-w(u)-w(v) \text { if } \ell(u, v)=\ell \\
& D_{\ell}[u, v]=\min _{j \in N(u)}\left\{w(j)+D_{\ell-1}[j, v]\right\}
\end{aligned}
$$

This gives rise to a new matrix product! Suppose we are given $D_{\ell-1}$. Let $\bar{D}_{\ell-1}[u, v]=w(u)+D_{\ell-1}[u, v]$. Then we are interested in $\left(A \odot \bar{D}_{\ell-1}\right)[u, v]=\min \left\{\bar{D}_{\ell-1}[j, v] \mid A[u, j]=1\right\}$.

We can compute this product as follows. Again, let p be a parameter that we will choose later. Sort the columns of $\bar{D}_{\ell-1}$, using $O\left(n^{2} \log n\right)$ time. Then partition each column into blocks of length p.

Let $D_{b}[u, v]=1$ if $\bar{D}_{\ell-1}[u, v]$ is between the $\left(b \frac{n}{p}\right)^{t h}$ and the $\left((b+1) \frac{n}{p}\right)^{t h}$ element of column v.
Compute the boolean matrix product of A and D_{b} for all b. Notice that $\left(A \cdot D_{b}\right)[u, v]=1$ iff there exists an x such that $A[u, x]=1$ and $\bar{D}_{\ell-1}[x, v]$ is among the $b^{t h}$ block of p elements in the sorted order of the $v^{t h}$ column. We can finish via an exhaustive search, trying all j such that $D_{\ell-1}[j, v]$ is in the $b^{t h}$ block of column v.

This takes $O\left(\frac{n}{p} n^{\omega}\right)$ time for multiplications, and $O\left(n^{2} p\right)$ time for the exhaustive search. This yields $O\left(n^{\frac{3+\omega}{2}}\right)$ time after balancing. However, we need to do this s times.

The overall runtime is hence $O\left(n^{\frac{3+\omega}{2}} s+n^{3} / s\right)$, which becomes $O\left(n^{\frac{9+\omega}{4}}\right)$ time after balancing.

References

[Cha10] T.M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput., 39(5):2075-2089, 2010.
[CKL07] Artur Czumaj, Mirosław Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest common ancestors in directed acyclic graphs. Theoretical Computer Science, 380(1):37-46, 2007.
[KL05] Miroslaw Kowaluk and Andrzej Lingas. Lca queries in directed acyclic graphs. In Automata, Languages and Programming, pages 241-248. Springer, 2005.
[YZ05] Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast matrix multiplication. In FOCS, pages 389-396, 2005.

