
CS367 Lecture 5 All-Pairs Shortest-Paths Variants
Scribe: Joshua R. Wang Date: April 14, 2014

1 The Distance Product

Last time we defined the distance product of n× n matrices:

(A ? B)[i, j] = min
k

A(i, k) + B(k, j)

Theorem 1.1. Given two n× n matrices A,B over {−M,M}, A ? B can be computed in Õ(Mnω) time.

2 Oracle for All-Pairs Shortest Paths

Theorem 2.1 (Yuster, Zwick ’05). Let G be a directed graph with edge weights in {−M,M} and no negative
cycles. Then in Õ(Mnω) time, we can compute an n× n matrix D such that for every u, v ∈ V , w.h.p.:

(D ?D)[u, v] = d(u, v)

Note that this does not immediately imply a fast APSP algorithm, because D may have large entries,
making computing D ?D expensive.

Corollary 2.1. Let G = (V,E) be a directed graph with edge weights in {−M,M} and no negative cycles.
Let s ∈ V . Then single-source shortest path from s can be computed in Õ(Mnω) time.

Proof. By Theorem 2.1, we can compute an n×n matrix D such that D?D is the correct all-pairs shortest-
paths matrix, in O(Mnω) time.

Then for all v ∈ V , we know that:

d(s, v) = min
k

D[s, k] + D[k, v]

Computing this for all v ∈ V only takes O(n2) time. Since ω ≥ 2, this entire computation is in O(Mnω)
time. �

Similarly, we can show that detecting negative cycles is fast since any negative cycle contains a simple
cycle of negative weight, and thus corresponds to a path from i to i for some i of length ≤ n.

Corollary 2.2. Let G be a directed graph with edge weights in {−M,M}. Then negative cycle detection can
be computed in Õ(Mnω) time.

We now prove our main theorem:
Proof of Theorem 2.1. Let `(u, v) be the number of nodes on a shortest u to v path. Additionally, for
notational convenience, suppose that A is an n× n matrix and that S, T ⊆ {1, . . . , n}. Then A[S, T] is the
submatrix of A consisting of rows indexed by S and columns indexed by T .

We claim that Algorithm 1 is our desired algorithm.

Running Time: In iteration j, we multiply an n× Õ
(

n
(3/2)j−1

)
matrix by a Õ

(
n

(3/2)j−1

)
× Õ

(
n

(3/2)j

)
matrix, where all entries are at most (3/2)jM (we will show iteration j only needs to consider paths with at
most (3/2)j nodes).

1

Algorithm 1: YZ(A)

A is a weighted adjacency matrix;
Set D ← A;
Set B0 ← V ;
for j = 1, . . . , log3/2 n do

Let D′ be D but with all entries larger than M(3/2)j replaced by ∞;
Choose Bj to be a random subset of Bj−1 of size Sj = c·n

(3/2)j log n;

Compute Dj ← D′[V,Bj−1] ? D′[Bj−1, Bj];

Compute Dj ← D′[Bj , Bj−1] ? D′[Bj−1, V];
foreach u ∈ V, b ∈ Bj do

Set D[u, b] = min(D[u, b], Dj [u, b]);

Set D[b, u] = min(D[b, u], Dj [b, u]);

return D;

Hence the runtime for iteration j is Õ
(
M(3/2)j(3/2)j(n

(3/2)j)ω
)

= Õ
(

Mnω

(3/2)j(ω−2)

)
. Over all iterations,

the running time is, asymptotically, ignoring polylog factors,

Mnω
∑
j

((3/2)ω−2)j ≤ Õ(Mnω).

If ω > 2, one of the log factors in the Õ can be omitted.
Correctness: We will prove the correctness by proving two claims.
Claim 1: For all j = 0, . . . , log3/2 n, v ∈ V , b ∈ Bj , if `(v, b) < (3/2)j then w.h.p. after iteration j,

D[v, b] = d(v, b)
Proof of Claim 1: We will prove it via induction. The base case (j = 0) is trivial, since the distance

is for one-hop paths is exactly the adjacency matrix. Now, assume the inductive hypothesis is true for j− 1.
Consider some v ∈ V and b ∈ Bj . We consider two possible cases:

Case I: `(v, b) < (3/2)j−1

But then b ∈ Bj ⊂ Bj−1. By our inductive hypothesis, D[v, b] = d(v, b) w.h.p.!
Case II: `(v, b) ∈ [(3/2)j−1, (3/2)j)
We will need to use our “middle third” technique.

v c d b
< 1

3

(
3
2

)j
= 1

3

(
3
2

)j
< 1

3

(
3
2

)j

We can choose c, d ∈ V such that:

`(v, c) <
1

3

(
3

2

)j

`(d, b) <
1

3

(
3

2

)j

`(c, d) =
1

3

(
3

2

)j

<

(
3

2

)j−1

By a hitting set argument, if c is a large enough constant, Bj−1∩ “middle third” 6= ∅ (w.h.p. depending
on c) since |Bj−1| = c n

(3/2)j log n.

2

Let x in Bj−1 ∩ “middle third”. Then `(v, x) ≤ `(v, c) + `(c, d) ≤ 2
3 (3

2)j = (3
2)j−1. Since x ∈ Bj−1, by

induction D[v, x] = d(v, x) w.h.p. at iteration j. By a similar argument we get that w.h.p. D[x, b] = d(x, b)
at iteration j.

Hence after this iteration, D[v, b] ≤ D[v, x] + D[x, b] = d(v, b).
As a small technical note, we will need to actually remove entries larger than (3/2)jM from D before

multiplying, but they are not needed.
Claim 2: For all u, v ∈ V , w.h.p. (D ?D)[u, v] = d(u, v).
Proof of Claim 2: Fix u, v ∈ V , and let j be such that `(u, v) ∈ [(3/2)j−1, (3/2)j). Look at a shortest

path between u and v. Its middle third hence has a length of (1/3)(3/2)j .
But then w.h.p. Bj hits this path at some x ∈ V such that `(u, x), `(x, v) ≤ (3/2)j−1. By Claim 1,

D(u, x) = d(u, x) and D(x, b) = d(x, b). Hence:

d(u, v) ≤ (D ?D)[u, v] ≤ minx∈Bj−1
D(u, x) + D(x, v) ≤ d(u, v)

This completes the proof. �

3 Node-Weighted All-Pairs Shortest Paths

Here we prove a theorem by Chan [Cha10].

Theorem 3.1. APSP with node weights can be computed in O(n
9+ω
4) or O(n2.84) time.

The idea is to compute long paths (> s hops) via a hitting set argument and running multiple calls to

Dijkstra’s algorithm, in a running time of Õ(n3

s). Then, handle short paths (≤ s hops) in O(sn
3+ω
2) time

via a specialized matrix multiplication.
Let G be a directed graph with node weights w : V → Z. Suppose we just wanted to compute distances

over paths of length two.
Let A be the unweighted adjacency matrix. Notice that d2(u, v) = w(u) + w(v) + min{w(j) | A[u, j] =

A[j, v] = 1}.
Suppose we made two copies of A, and sorted one’s columns by w(j) in nondecreasing order, and the

others rows by w(j) in nondecreasing order.
Then it would suffice to compute min{j | A[i, j] = A[j, k] = 1}, or the “minimum witnesses” matrix

product. We use an algorithm provided by Kowaluk and Lingas [KL05]:

Lemma 3.1 (Kowaluk, Lingas ’05). Minimum witnesses of A,B (n × n matrices) is in O(n2.616) or

O(n2+ 1
4−ω) time.

Note that this algorithm has been improved on by Czumaj, Kowaluk, and Lingas [CKL07].

Proof. Let p be some parameter that we will choose later. Bucket A by columns into buckets of size p.
Bucket B by rows into buckets of size p.

For every bucket b ∈ {1, . . . , n
p }, compute Ab ·Bb (boolean matrix product). This takes O((n

p)2pω) time

each, or O(n2pω−2) time each. But there are n
p of these, so this takes O(n3

p3−ω) time total.

Then for all i, j ∈ {1, . . . , n
p }, do the following. Let bij be the smallest b such that (Ab ·Bb)[i, j] = 1. Hence

we can just try all the choices of k in bucket bij , and return the smallest k such that Ab[i, k]Bb[k, j] = 1.
This is just n2 exhaustive searches, so this step runs in O(n2p) time.

Setting these equal and balancing, we get that we should set p = n
1

4−ω to make the overall time

O(n2+ 1
4−ω). �

3

How can we compute distances for paths that are longer than two hops? For each ` ≤ s, we want to
compute D` such that:

D`[u, v] = d(u, v)− w(u)− w(v) if `(u, v) = `

D`[u, v] = min
j∈N(u)

{w(j) + D`−1[j, v]}

This gives rise to a new matrix product! Suppose we are given D`−1. Let D`−1[u, v] = w(u) +D`−1[u, v].
Then we are interested in (A�D`−1)[u, v] = min{D`−1[j, v] | A[u, j] = 1}.

We can compute this product as follows. Again, let p be a parameter that we will choose later. Sort the
columns of D`−1, using O(n2 log n) time. Then partition each column into blocks of length p.

Let Db[u, v] = 1 if D`−1[u, v] is between the
(
bnp

)th
and the

(
(b + 1)n

p

)th
element of column v.

Compute the boolean matrix product of A and Db for all b. Notice that (A ·Db)[u, v] = 1 iff there exists
an x such that A[u, x] = 1 and D`−1[x, v] is among the bth block of p elements in the sorted order of the
vth column. We can finish via an exhaustive search, trying all j such that D`−1[j, v] is in the bth block of
column v.

This takes O(n
pn

ω) time for multiplications, and O(n2p) time for the exhaustive search. This yields

O(n
3+ω
2) time after balancing. However, we need to do this s times.

The overall runtime is hence O(n
3+ω
2 s + n3/s), which becomes O(n

9+ω
4) time after balancing.

References

[Cha10] T.M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput.,
39(5):2075–2089, 2010.

[CKL07] Artur Czumaj, Miros law Kowaluk, and Andrzej Lingas. Faster algorithms for finding lowest com-
mon ancestors in directed acyclic graphs. Theoretical Computer Science, 380(1):37–46, 2007.

[KL05] Miroslaw Kowaluk and Andrzej Lingas. Lca queries in directed acyclic graphs. In Automata,
Languages and Programming, pages 241–248. Springer, 2005.

[YZ05] Raphael Yuster and Uri Zwick. Answering distance queries in directed graphs using fast matrix
multiplication. In FOCS, pages 389–396, 2005.

4

