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1 Matchings in graphs

This week we will be talking about finding matchings in graphs: a set of edges that do not share endpoints.

Definition 1.1 (Maximum Matching). Given an undirected graph G = (V, E), find a subset of edges M C E
of mazimum size such that every pair of edges e,e’ € M do not share endpoints e N e’ = ().

Definition 1.2 (Perfect Matching). Given an undirected graph G = (V, E) where |V| = n is even, find a
subset of edges M C E of size n/2 such that every pair of edges e,e’ € M do not share endpoints e N e’ = ().
That is, every node must be covered by the matching M.

Obviously, any algorithm for Maximum Matching gives an algorithm for Perfect Matching. It is an
exercise to show that if one can solve Perfect Matching in T'(n) time, then one can solve Maximum Matching
in time O(T(Qn)) The idea is to binary search for the maximum k for which there is a matching M with
|M| > k. To check whether such M exists, we can add a clique on n — 2k nodes to the graph and connect it
to the original graph with all possible edges. The new graph will have a perfect matching if and only if the
original graph had a matching with k£ edges.

We will focus on Perfect Matching and give algebraic algorithms for it. Because of the above reduction,
this will also imply algorithms for Maximum Matching. The idea will be to define some matrix such that
the determinant of this matrix is non-zero if and only if the graph has a perfect matching.

1.1 The Tutte Matrix
Definition 1.3. For a graph G = (V, E) the following n x n matriz T is the Tutle matriz of G:
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The following theorem is at the core of all the algorithms for Perfect Matching that we will discuss.

Theorem 1.1 (Tutte). For any graph G = (V, E) with even |V|, the determinant of the Tutte matriz T is
non-zero if and only if G contains a perfect matching.

det(T) #£ 0 <= Gcontains a perfect matching.
Proof sketch. By the definition of the determinant:
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where S, is the set of permutations of [n] and sign(o) is (—1) to the power of the parity of inversions for o,
i.e. the number of pairs z < y for which o(z) > o(y).
Consider a perfect matching M = {(u1,v1), (u2,v2), ... (Upn/2,Vn/2)} and define o5 such that ops(u;) = v
and o (v;) = u;. We get that:
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Notice that there is no o # oy for which f, = £f,,,, since the only way they can be equal is if exactly the
same cycles appear in both permutations. Therefore, the term f,,, is not cancelled in (1) when we sum over
all permutations, and det(T") # 0.

For the other direction, it turns out that the determinant is equal to the sum when we take only even
cycles, because the odd cycles cancel out. But the term of even cycles would be non-zero iff they correspond
to matchings. O

The determinant det(7) is an n2-variate polynomial of degree n and therefore can be expensive to
compute.

Theorem 1.2 (Lovasz). If we pick values v;; for each x;; uniformly at random from {1,...,n?} and let
T({vij}) be the matriz obtained from T by these substitutions, then det(T'({vi;})) # 0 iff det(T) # 0, with
high probability.

This gives a polynomial time algorithm for Perfect Matching that works with high probability. To prove
this theorem we use:

Lemma 1.1 (Schwartz-Zippel). Let P be a non-zero polynomial over {z1,...,xn} of degree d over a field
F. If we pick values vy,...,vn randomly from a finite set S C F and let P({v;}) be the value obtained by
setting x1 = v1,...,ony = vy in P, then P({v;}) # 0 with probability at least 1 — ﬁ

For det(T) we have deg(det(T)) = n and therefore it is enough to pick |S| = n%. However, if we work over
7Z the entries of this determinant could be very large and we only get a running time of O(n“*!). Instead,
pick a prime p > n® and work over Z,. If G has a perfect matching M then the polynomial det(7) mod p
contains the non-zero term f,,, and is therefore a non-zero polynomial and we can apply the Schwartz-Zippel
lemma to check whether the determinant is zero in O(n*) time.

2 Finding the matching

The above algorithm tells us in O(n“) time whether the graph contains a perfect matching. In the rest of
this lecture (and the next one) we will discuss algorithms that can find the perfect matching for us.

There is a simple O(n“*2) solution: for every edge e € E, remove it from the graph and check if there is
still a perfect matching in O(n*) time. If the graph does not contain a perfect matching any more, put the
edge back and move on to the next edge, otherwise leave the edge out of the graph. What we get in the end
is a graph with n/2 edges that contains a perfect matching and we’re done.

Today we will see an O(n*T!) algorithm and next week we’ll see an O(n*) one.

2.1 The Rabin-Vazirani Algorithm

We will prove this thorem.
Theorem 2.1 (Rabin-Vazirani). A perfect matching can be found in O(n**1) time.

Consider Algorithm 1.

We use the notation Ty y for subsets X,Y C [n] to denote the matrix obtained from T' by removing the
rows indexed by X and columns indexed by Y.

Clearly, the algorithm performs O(n) computations that take O(n®) time and therefore runs in O(n“*1)
time. In fact, the algorithm is choosing some e = (1, j) in some perfect matching and recursing on G'\ {1, j}.
We show the correctness below.

Recall the adjoin formula:
det(Tiy, 53)

det(T)

and therefore in the algorithm we have that N[1, j] # 0 iff det(T;) ¢53) # 0.

76, 4] = (=1)" -



Algorithm 1: RV(G)
T < T({vi;}): a random substitution of the Tutte matrix modulo a large enough prime;
if det(T") = 0 then
L return no perfect matching;

while [M| < n/2 do
Compute N = T~ in O(n*) time and set M = 0);
Find j such that N[1,j] # 0 and (1,5) € E;
M« MU{(1,j)}
T «+ T(1,53,41,5) i-e. remove rows 1 and j and columns 1 and j from T

By the definition of the determinant:

n

det(T) = Y (1) - T[i, j] - det(Tpay ),

i=1

and therefore if det(7") # 0 then there exists j € [n] such that T'[1, j]-det(T1y¢;1) # 0 and therefore (1,j) € E
and det(Ty1y(;3) # 0. Therefore, to show the correctness of the algorithm, it is enough to show that the
latter also implies that det(Tyy jy¢1,53) # 0 (i.e. when removing {1, 5}, {1, j} instead of just {1}{j}.)

To prove this, we need to use properties of the Tutte matrix. Note that T is a skew symmetric matrix:
T=-T".

Proposition 1. Let A be an n X n skew symmetric matriz, then:
1. A7 s skew symmetric.
2. if n is odd, then det(A) = 0.
3. (Forbenius) let X, Y C [n] s.t. | X|=|Y|=rank(A) then: det(A[X,Y]) # 0 implies det(A[Y,Y]) # 0.
Proof of 2: det(A) = det(—A*) = (—1)" det(A). We will use 3 without proof.
Lemma 2.1. If det(Ty1y (;3) # 0 then det(Ty j3.41,51) # 0.

Proof. Assume without loss of generality that j = 2. By property 2 we know that T,y {13 = 0, but by our
assumption det(Ty1y,(2}) 7# 0 and therefore the column rank of Ty} f1,21 is 7 — 2. The rank of Ty 413 is
n — 2 and we can use the Forbenius property.

Let A = T{iy 1y and Y = {3,...,n}. There exists a subset X C [n],|X| = n — 2 such that T[X,Y]
has full rank. T[X,Y] is invertible and therefore since det(A[X,Y]) = det(T[X,Y]) # 0 we get that
det(T{172}7{1,2}) = det(A[Y, Y]) 7é 0. O



