Fast Sparse Matrix Multiplication

RAPHAEL YUSTER
University of Haifa, Haifa, Israel
AND

URI ZWICK

Tel-Aviv University, Tel-Aviv, Israel

Abstract. Let A and B two n x n matrices over a ring R (e.g., the reals or the integers) each con-
taining at most m nonzero elements. We present a new algorithm that multiplies A and B using
O(m®n'? 4 n*+°M)) algebraic operations (i.e., multiplications, additions and subtractions) over R.
The naive matrix multiplication algorithm, on the other hand, may need to perform 2(mn) operations
to accomplish the same task. For m < n'''*, the new algorithm performs an almost optimal number
of only n?+°(" operations. For m < n'%, the new algorithm is also faster than the best known matrix
multiplication algorithm for dense matrices which uses O (n>3*) algebraic operations. The new algo-
rithm is obtained using a surprisingly straightforward combination of a simple combinatorial idea and
existing fast rectangular matrix multiplication algorithms. We also obtain improved algorithms for the
multiplication of more than two sparse matrices. As the known fast rectangular matrix multiplication
algorithms are far from being practical, our result, at least for now, is only of theoretical value.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems—Computations on matrices; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—Computations on discrete
structures; 1.1.2 [Symbolic and Algebraic Manipulation]: Algorithms—Algebraic algorithms

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Matrix multiplication, sparse matrices

1. Introduction

The multiplication of two n x n matrices is one of the most basic algebraic problems
and considerable effort was devoted to obtaining efficient algorithms for the task.
The naive matrix multiplication algorithm performs O(n?) operations. Strassen

A preliminary version of this article appeared in the Proceedings of the 12th Annual European
Symposium on Algorithms (ESA’04) (Bergen, Norway). 2004, pp. 604-615.

Authors’ addresses: R. Yuster, Department of Mathematics, University of Haifa, Haifa 31905, Israel,
e-mail: raphy@research.haifa.ac.il; U. Zwick, School of Computer Science, Tel Aviv University, Tel
Aviv 69978, Israel, e-mail: zwick@cs.tau.ac.il.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2005 ACM 1549-6325/05/0700-0002 $5.00

ACM Transactions on Algorithms, Vol. 1, No. 1, July 2005, pp. 2-13.

Fast Sparse Matrix Multiplication 3

[1969] was the first to show that the naive algorithm is not optimal, giving an
O (n*3") algorithm for the problem. Many improvements then followed. The cur-
rently fastest matrix multiplication algorithm, with a complexity of O(n*3), was
obtained by Coppersmith and Winograd [1990]. More information on the fascinat-
ing subject of matrix multiplication algorithms and its history can be found in Pan
[1985] and Biirgisser et al. [1997]. An interesting new group theoretic approach
to the matrix multiplication problem was recently suggested by Cohn and Umans
[2003]. For the best available lower bounds, see Shpilka [2003] and Raz [2003].

Matrix multiplication has numerous applications in combinatorial optimization in
general, and in graph algorithms in particular. Fast matrix multiplication algorithms
can be used, for example, to obtain fast algorithms for finding simple cycles in
graphs [Alon et al. 1995, 1997; Yuster and Zwick 2004], for finding small cliques
and other small subgraphs [Nesetfil and Poljak 1985], for finding shortest paths
[Seidel 1995; Shoshan and Zwick 1999; Zwick 2002], for obtaining improved
dynamic reachability algorithms [Demetrescu and Italiano 2000; Roditty and Zwick
2002], and for matching problems [Mulmuley et al. 1987; Rabin and Vazirani 1989;
Cheriyan 1997; Mucha and Sankowski 2004a, 2004b]. Other applications can be
found in Chan [2002] and Kratsch and Spinrad [2003], and this list is not exhaustive.

In many cases, the matrices to be multiplied are sparse, that is, the number of
nonzero elements in them is negligible compared to the number of zeros in them.
For example, if G = (V, E) is a directed graph on n vertices containing m edges,
then its adjacency matrix Ag is an n X n matrix with only m nonzero elements
(1’s in this case). In many interesting cases, m = o(n?). Unfortunately, the fast
matrix multiplication algorithms mentioned above cannot utilize the sparsity of the
matrices multiplied. The complexity of the algorithm of Coppersmith and Winograd
[1990], for example, remains O (n*3*) even if the multiplied matrices are extremely
sparse. The naive matrix multiplication algorithm, on the other hand, can be used to
multiply two n x n matrices, each with at most m nonzero elements, using O (mn)
operations (see next section). Thus, for m = O(n'?’), the sophisticated matrix
multiplication algorithms of Coppersmith and Winograd [1990] and others do not
provide any improvement over the naive matrix multiplication algorithm.

In this article, we show that the sophisticated algebraic techniques used by the fast
matrix multiplication algorithms can nevertheless be used to speed-up the computa-
tion of the product of even extremely sparse matrices. More specifically, we present
a new algorithm that multiplies two n x n matrices, each with at most m nonzero
elements, using O (m%'n'? + n?>t°M) algebraic operations. (The exponents 0.7
and 1.2 are derived, of course, from the current 2.38 bound on the exponent of
matrix multiplication, and from bounds on other exponents related to matrix mul-
tiplications, as will be explained in the sequel.) There are three important things to
notice here:

(i) If m > n'*€, for any € > 0, then the number of operations performed by the
new algorithm is o(mn), that is, less then the number of operations performed,
in the worst-case, by the naive algorithm.

(i) If m < n"'*, then the new algorithm performs only n>+°(") operations. This is
very close to optimal as all n? entries in the product may be nonzero, even if
the multiplied matrices are very sparse.

(iih) f m < n'% then the new algorithm performs only o(n*3%), that is, fewer
operations than the fastest known matrix multiplication algorithm.

4 R. YUSTER AND U. ZWICK

In other words, the new algorithm improves on the naive algorithm even for
extremely sparse matrices (i.e., m = n'*€), and it improves on the fastest matrix
multiplication algorithm even for relatively dense matrices (i.e., m = n'%),

The new algorithm is obtained using a surprisingly straightforward combina-
tion of a simple combinatorial idea, implicit in Eisenbrand and Grandoni [2003]
and Yuster and Zwick [2004], with the fast matrix multiplication algorithm of
Coppersmith and Winograd [1990], and the fast rectangular matrix multiplication
algorithm of Coppersmith [1997]. It is interesting to note that a fast rectangular
matrix multiplication algorithm for dense matrices is used to obtain a fast matrix
multiplication algorithm for sparse square matrices.

As mentioned above, matrix multiplication algorithms are used to obtain fast
algorithms for many different graph problems. We note (with some regret . . .) that
our improved sparse matrix multiplication algorithm does not yield, automatically,
improved algorithms for these problems on sparse graphs. These algorithms may
need to multiply dense matrices even if the input graph is sparse. Consider for
example the computation of the transitive closure of a graph by repeatedly squaring
its adjacency matrix. The matrix obtained after the first squaring may already be
extremely dense. Still, we expect to find many situations in which the new algorithm
presented here could be useful.

In view of the above remark, we also consider the problem of computing the prod-
uct Aj A - - - Ay of three or more sparse matrices. As the product of even very sparse
matrices can be completely dense, the new algorithm for multiplying two matrices
cannot be applied directly in this case. We show, however, that some improved
bounds may also be obtained in this case. Our results here are less impressive,
however. For k£ = 3, we improve, for certain densities, on the performance of all
existing algorithms. For £ > 4, we get no worst-case improvements at the moment,
but such improvements will be obtained if bounds on certain matrix multiplication
exponents are sufficiently improved.

The problem of computing the product A; A, - - - A; of k > 3 rectangular matri-
ces, known as the chain matrix multiplication problem, was, of course, addressed
before. The main concern, however, was finding an optimal way of parenthesizing
the expression so that a minimal number of operations will be performed when the
naive algorithm is used to successively multiply pairs of intermediate results. Such
an optimal placement of parentheses can be easily found in O (k%) time using dy-
namic programming (see, e.g., Chapter 15 of Cormen et al. [2001]). A much more
complicated algorithm of Hu and Shing [1982, 1984] can do the same in O (k log k)
time. An almost optimal solution can be found in O (k) time using a simple heuristic
suggested by Chin [1978]. It is easy to modify the simple dynamic programming
solution to the case in which fast rectangular matrix multiplication algorithm is
used instead of the naive matrix multiplication algorithm. It is not clear whether the
techniques of Hu and Shing and of Chin can also be modified accordingly. Cohen
[1997] suggests an interesting technique for predicting the nonzero structure of a
product of two or more matrices. Using her technique, it is possible to exploit the
possible sparseness of the intermediate products.

All these techniques, however, reduce the computation of a product like A; Ay A3
into the computation of A;A; and then (A; A,)As, or to the computation of A A3
and then A(A,A3). We show that, for certain densities, a faster way exists.

The rest of the article is organized as follows. In the next section, we review the
existing matrix multiplication algorithms. In Section 3, we present the main result of

Fast Sparse Matrix Multiplication 5

this paper, that is, the improved sparse matrix multiplication algorithm. In Section 4,
we use similar ideas to obtain an improved algorithm for the multiplication of three
or more sparse matrices. We end, in Section 5, with some concluding remarks and
open problems.

2. Existing Matrix Multiplication Algorithms

In this short section, we examine the worst-case behavior of the naive matrix multi-
plication algorithm and state the performance of existing fast matrix multiplication
algorithms.

2.1. THE NAIVE MATRIX MULTIPLICATION ALGORITHM. Let A and B be two
n x n matrices. The product C = AB is defined as follows: ¢; = ZZZI a;ibi;,
for 1 < i, j < n. The naive matrix multiplication algorithm uses this definition
to compute the entries of C using n® multiplications and n* — n? additions. The
number of operations can be reduced by avoiding the computation of products a; by
for which a;z = 0 or b;; = 0. In general, if we let @; be the number of nonzero
elements in the kth column of A, and b; be the number of nonzero elements in the
kth row of B, then the number of multiplications that need to be performed is only
> i_, axby. The number of additions required is always bounded by the required
number of multiplications. This simple sparse matrix multiplication algorithm may
be considered folklore. It can also be found in Gustavson [1978].

If A contains at most m nonzero entries, then Y }_, axby < O j_, @)n < mn.
The same bound is obtained when B contains at most 7 nonzero entries. Can we
get an improved bound on the worst-case number of products required when both A
and B are sparse? Unfortunately, the answer is no. Assume that m > n and consider
the case @; = b; = n,if i < m/n,and @, = b; = 0, otherwise. (In other words, all
nonzero elements of A and B are concentrated in the first m/n columns of A and
the first m/n columns of B.) In this case Zzzl agby = (m/n) - n*> = mn. Thus,
the naive algorithm may have to perform mn multiplications even if both matrices
are sparse. It is instructive to note that the computation of AB in this worst-case
example can be reduced to the computation of a much smaller rectangular product.
This illustrates the main idea behind the new algorithm: When the naive algorithm
has to perform many operations, rectangular matrix multiplication can be used to
speed up the computation.

To do justice with the naive matrix multiplication algorithm, we should note that
in many cases that appear in practice the matrices to be multiplied have a special
structure, and the number of operations required may be much smaller than mn. For
example, if the nonzero elements of A are evenly distributed among the columns
of A, and the nonzero elements of B are evenly distributed among the rows of B,
we have @y = by = m/n, for 1 < k < n, and ZZ=1 aby = n - (m/n)2 = mz/n.
We are interested here, however, in worst-case bounds that hold for any placement
of nonzero elements in the input matrices.

2.2. FAST MATRIX MULTIPLICATION ALGORITHMS FOR DENSE MATRICES. Let
M(a, b, c) be the minimal number of algebraic operations needed to multiply an
a x b matrix by a b x ¢ matrix over an arbitrary ring R. Let o(r, s, t) be the minimal
exponent o for which M(n", n*, n') = O (n®*°). We are interested here mainly
inw = w(l, 1, 1), the exponent of square matrix multiplication, and w(1, r, 1), the

6 R. YUSTER AND U. ZWICK

exponent of rectangular matrix multiplication of a particular form. The best bounds
available on w(1, r, 1), for 0 < r < 1 are summarized in the following theorems:

THEOREM 2.1 [COPPERSMITH AND WINOGRAD 1990]. w < 2.376.

Next, we define two more constants, o and S, related to rectangular matrix
multiplication.

Definition 2.2. o = max{0 <r <1 | o(1,r,1)=2}, B =

THEOREM 2.3 [COPPERSMITH 1997]. « > 0.294.

It is not difficult to see that these Theorems 2.1 and 2.3 imply the following
theorem. A proof can be found, for example, in Huang and Pan [1998].

2 ifo<r <a,

T 24, o(l,r, 1) <
HEOREM o(l,r,1) =< {2_'_,3(,, — &) otherwise.

COROLLARY 2.5. M(n,¢,n) < n>@ftoygh 4 p2+ol)

All the bounds in the rest of the paper will be expressed terms of « and 8. Note
that with @ = 2.376 and o = 0.294 we get 8 =~ 0.533. If = 2, as conjectured by
many, then @ = 1. (In this case, g is not defined, but also not needed.)

3. The New Sparse Matrix Multiplication Algorithm

Let A, be the kth column of A, and let By, be the kth row of B, for 1 < k < n.
Clearly AB =), A.uBys«. (Note that A, is a column vector, By, a row vector,
and A, By, 1s an n X n matrix.) Let a; be the number of nonzero elements in A,
and let b; be the number of nonzero elements in By.,. (For brevity, we omit the bars
over a; and by used in Section 2.1. No confusion will arise here.) As explained in
Section 2.1, we can naively compute AB using O (D, aiby) operations. If A and B
each contain m nonzero elements, then) , a;b; may be as high as mn. (See the
example in Section 2.1.)

For any subset I C [n] let A,; be the submatrix composed of the columns of A
whose indices are in / and let B, the submatrix composed of the rows of B whose
indices are in I. If J = [n] — I, then we clearly have AB = A,;B;. + A.;By..
Note that A,; By, and A, By, are both rectangular matrix multiplications. Recall
that M (n, £, n) is the cost of multiplying an n x £ matrix by an £ x n matrix using
the fastest available rectangular matrix multiplication algorithm.

Let w be a permutation for which a,1)br1) = dz)br2) = -+ = Axm)br(n)-
A permutation m satisfying this requirement can be easily found in O(n) time
using radix sort. The algorithm chooses a value 1 < ¢ < n, in a way that will be
specified shortly, and sets I = {w(1),...,n(¥)} and J = {w(£ + 1), ..., 7 (n)}.
The product A,; By is then computed using the fastest available rectangular matrix
multiplication algorithm, using M (n, £, n) operations, while the product A,; By, is
computed naively using O(D_,_, dzx b=) operations. The two matrices A,; B,
and A, By, are added using O (n?) operations. We naturally choose the value ¢ that
minimizes M(n, £, n) + Y _,_, dxb= - (This can easily be done in O (n) time by
simply checking all possible values.) The resulting algorithm, which we call SMP
(Sparse Matrix Multiplication), is given in Figure 1. We now claim:

Fast Sparse Matrix Multiplication 7

Algorithm SMP(A, B)

Input: Two n X n matrices A and B.
Output: The product AB.

(1) Let ag be the number of non-zero elements in A, for 1 <k < n.

(2) Let by be the number of non-zero elements in By, for 1 < k < n.

(3) Let m be a permutation for which ar(1)br(1) > .+ > ar(n)br(n)-

(4) Find an 0 < ¢ < n that minimizes M (n,¢,n) + Zk>z A (1) O (1) -

(5) Let I ={m(1),...,7({)} and J ={w({ +1),...,m(n)}.

(6) Compute C1 <« A,rBj. using a fast dense rectangular matrix multi-
plication algorithm.

(7) Compute Co «— A, jBj. using the naive sparse matrix multiplication
algorithm.

(8) Output Cq + Ca.

FIG. 1. The new fast sparse matrix multiplication algorithm.

THEOREM 3.1. Algorithm SMP(A, B) computes the product of two n X n ma-
trices over a ring R, with m| and m, nonzero elements respectively, using at most

. B 2=af
O(mln {(mlmZ)ﬂ“ pr T 2o i mgn, nw+o(l)})

ring operations.

. 28 2-ap
If m; = m, = m, then the first term in the bound above becomes m #+T n 7+ +olh),

It is easy to check that for m = O(n'*7), the number of operations performed by
the algorithm is only n2+°(D_ It is also not difficult to check that form = O (n“*"

279,
for any € > 0, the algorithm performs only o(n®) operations. Using the currently
best available bounds on w, « and B, namely w >~ 2.376, « >~ 0.294, and >~
0.533, we get that the number of operations performed by the algorithm is at most
O (m°7n'24-n?+°M) justifying the claims made in the abstract and the introduction.

The proof of Theorem 3.1 relies on the following simple lemma:

LEMMA 3.2. Foranyl <t <nwehave) ;_, axibzu < mlgmz-

PROOF. Assume, without loss of generality, that a; > a, > --- > a,. Let
1 <€ < n. Wethenhave) |, dribry < D _i-;akbr, as by the definition
of , the terms on the left hand side are the smallest n — £ terms of their kind. Also
Lagr <) ,opax < my. Thus, agyy < m; /L. Putting this together, we get

mi miymyp
D txwbray < Y abe < apr » b < zm= O
k>¢ k>{ k>¢

We are now ready for the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. We first examine the two extreme possible choices
of £. When £ = 0, the naive matrix multiplication algorithm is used. When £ = n, a
fast dense square matrix multiplication algorithm is used. As the algorithm chooses
the value of ¢ that minimized the cost, it is clear that the number of operations
performed by the algorithm is O(min{mn, myn, n®+W}),

All that remains, therefore, is to slgow 2'[_lgﬂat the number of operations performed
by the algorithm is also O((mymy)# 1 n 7 700 4 p2HoMy If yyyim, < n?t, let

8 R. YUSTER AND U. ZWICK

OO0 QOOLOL

O
O
0)
O
O
O
)
O

FIG. 2. A layered graph corresponding to the product A; Ay A3 A,.
L= mlmz/nz. As ¢ < n“, we have,

mims
M, £,n)+ Y arbrpy < n2+0(”+—£ = n*to0,
k>¢

1 ap2 . .
If mymy, > n>t, let £ = (mymy)Fn e, It is easy to verify that £ > n®, and
therefore

M(n, 0, n) < n2b+ogh — (mlmz)%n%““),

mm; l—_1 2= B 2ap
E Arybrpy < . = (mymy) P = (mymp)Pin A,
k>t

B 20 .
Thus, M(n,€,n) + Y ,_, dzxobr@y = (mymy)Fin e +o) " Ag the algorithm
chooses the value of ¢ that minimizes the number of operations, this completes

the proof of the theorem. []

4. Multiplying Three or More Matrices

In this section, we extend the results of the previous section to the product of three
or more matrices. Let A, A,, ..., A; be n X n matrices, and let m,., for1 <r <k
be the number of nonzero elements in A,. Let B = A A, - - - Ay be the product of
the k£ matrices. As the product of two sparse matrices is not necessarily sparse, we
cannot use the algorithm of the previous section directly to efficiently compute the
product of more than two sparse matrices. Nevertheless, we show that the algorithm
of the previous section can be generalized to efficiently handle the product of more
than two matrices.
Let A, = (a,-(;‘)), forl <r <k,and B = AjA,--- Ay = (by). It follows easily
from the definition of matrix multiplication that
b= Y aVa® .. ab)

L,r1r,r Tk=25Tk=1" Th=1,]
F15725e k-1

It is convenient to interpret the computation of b; as the summation over paths
in a layered graph, as shown (for the case k = 4) in Figure 2. More precisely,

Fast Sparse Matrix Multiplication 9

Algorithm SCMP(A1, As, ..., Ay)

Input: n X n matrices Ay, Ag, ..., A.
Output: The product A; Az --- Ag.

k 1 aB—2

(1) Let £=([[,_, m¢)F=TFF nF=175 .

(2) Let I, be the set of indices of £ rows of A, with the largest number
of non-zero elements, and let J, = [n] — I, for 2 <r < k.

(3) Compute P «— (A1), ,,(A2);,,, " (Ar); . by enumerating all
corresponding paths, for 1 <r < k.

(4) Compute S, «— Ay --- Ay, for 2 < r < k, using recursive calls to
the algorithm.

(5) Compute By «— (Pr—1)«1, (Sr) 1% using the fastest available rect-
angular matrix multiplication algorithm, for 2 < r < k.

(6) Output (3_F_, B,) + Py

FIG. 3. Computing the product of several sparse matrices.

the layered graph corresponding to the product A; A, - - - Ay is composed of k + 1
layers Vi, Va, ..., Viy1. Each layer V., where 1 < r < k + 1 is composed of n

vertices v, ;, for 1 < 1 < n. For each nonzero element afj " in A,, there is an edge
Vri = Vr41,; in the graph labeled by the element aj;. The element b;; of the product
is then the sum over all directed paths in the graph from vy ; to vi,; of the product
of the elements labelling the edges of the path.

Algorithm SCMP (Sparse Chain Matrix Multiplication) given in Figure 3 is a
generalization of the variant of algorithm SMP given in the prev10us section for the
product of two matrices. The algorithm starts by setting £ to (]_[_ymp)ER T T 1+ﬁ
where m, is the number of nonzero elntrime/ﬁ2 in A, for 1 < r < k. (Note that
when k& = 2, we have £ = (mmy)#"n#T, as in the proof of Theorem 3.1.)
Next, the algorithm lets /., be the set of indices of the ¢ rows of A, with the
largest number of nonzero elements, ties broken arbitrarily, for 2 < r < k. It
also lets J. = [n] — I, be the set of indices of the n — £ rows of A, with the
smallest number of nonzero elements. The rows of A, with indices in /, are said
to be the heavy rows of A,, while the rows of A, with indices in J, are said to
be light rows. The algorithm is then ready to do some calculations. For every
1 <r < k, it computes P, < (A1),;,(A2)y,s, - (A;); . This is done by enu-
merating all the corresponding paths in the layered graph corresponding to the
product. The matrix P, is an n X n matrix that gives the contribution of the light
paths, that is, paths that do not use elements from heavy rows of A,, ..., A,, to
the prefix product A; A, - - - A,. Next, the algorithm computes the suffix products
S, < A, - Ay, for 2 < r < k, using recursive calls to the algorithm. The cost of
these recursive calls, as we shall see, will be overwhelmed by the other operations
performed by the algorithm. The crucial step of the algorithm is the computation of
B, < (Pr_1)41,(S/)1.4, for 2 < r < k, using the fastest available rectangular ma-
trix multiplication algorithm. The algorithm then computes and outputs the matrix

r, B)+ P

THEOREM 4.1. Let A, Ay, ..., Ay benxn matrices eachwithmy, mo, ..., m;
nonzero elements, respectively, where k > 2 is a constant. Then, algorithm

10 R. YUSTER AND U. ZWICK

SCMP(A1, A, ..., Ay) correctly computes the product A1 A, - - - Ay using

B
k P o epan
—aB) (b |
) l—lmr p T o) 2o()
r=I1

algebraic operations.

PROOF. It is easy to see that the outdegree of a vertex v, ; is the number of
nonzero elements in the jth row of A,. We say that a vertex v, ; is heavy if j € I,,
and light otherwise. (Note that vertices of V| are not classified as light or heavy.
The classification of V; vertices is not used below.) A path in the layered graph is
said to be light if all its intermediate vertices are light, and heavy if at least one of
its intermediate vertices is heavy.

Let af’ls)l a§]2?sz x -ag‘;’ls)kqa‘gfjl, ; be one of the terms appearing in the sum of b;
given in (1). To prove the correctness of the algorithm we show that this term
appears in exactly one of the matrices B,, ..., B; and P, which are added up to
produce the matrix returned by the algorithm. Indeed, if the path corresponding to
the term is light, then the term appears in P;. Otherwise, let v, ; be the first heavy
vertex appearing on the path. The term then appears in B, and in no other product.
This completes the correctness proof.

We next consider the complexity of the algorithm. As mentioned, the outdegree
of a vertex v, ; is equal to the number of nonzero elements in the jthrow of A,. The
total number of nonzero elements in A, is m,. Let d, be the maximum outdegree
of a light vertex of V... The outdegree of every heavy vertex of V, is then at least
d,. As there are £ heavy vertices, it follows that d, < m, /¢, for2 <r <k.

The most time-consuming operations performed by the algorithm are the com-
putation of

P < (A1, (A2) g g, - (Al s

by explicitly going over all light paths in the layered graph, and the k — 1 rectangular
products

B, < (Prfl)*I,A(Sr)I,-*, for2 <r <k.

The number of light paths in the graph is at most m; - dxds - - - diy. Using the
bounds we obtained on the d,’s, and the choice of £ we get that the number of light

paths is at most
k
my - dyds - dy < (H%-)/ﬁk_l
r=1

k=1 _B
k k T k148 k k—1+p
Q—ap) (k=1) Q—apf) (k—=1)
< | |m,. | |m, n k48 = | |m,, n e
r=1

r=1 r=1

. . L e-epk-1 .
Thus, the time taken to compute P; is 0((]_[f:1 m,)"* n =155), (Computing

the product of the elements along a path requires k operations, but we consider k
to be a constant.)

Fast Sparse Matrix Multiplication 11

As |I| = £, for2 <r <k, the product (P,_1).;.(S;)1.+ 1s the product of an n x £
matrix by an £ x n matrix whose cost is M (n, £, n). Using Corollary 2.5 and the
choice of ¢ made by the algorithm, we get that

M(n, €,n) < n?~Progh 4 p2to)

B
k P o
B
— n27o¢/3+0(1) | | m, P 4+ n2+o(1)

r=1

k 148 ,
= l_[m, n(z_“ﬁ)(l_m)ﬂ(l) n n2+0(1)

r=1

B
k S o apun
B e
= | |m,~ n ks +0(1)+n2+"(1) .

r=1

Finally, it is easy to see that the cost of computing the suffix products S, <«
Ay -+ A, for 2 < r < k, using recursive calls to the algorithm, is dominated by
the cost of the other operations performed by the algorithm. (Recall again that k is
a constant.) This completes the proof of the theorem. []

There are two alternatives to the use of algorithm SCMP for computing the
product A A, - - - Ax. The first is to ignore the sparsity of the matrices and multiply
the matrices in O(n®) time. The second is to multiply the matrices, one by one,
using the naive algorithm. As the naive algorithm uses at most O (mn) operations
when one of the matrices contains only m nonzero elements, the total number of
operations in this case is at most 0((2?‘21 m,)n). (Actually, it is not difficult to
see that the largest m, can be omitted from the sum here.) For simplicity, let us
consider the case in which each one of the matrices Ay, ..., A; contains m nonzero
elements. A simple calculation then shows that SCMP is faster than the fast dense
matrix multiplication algorithm for

k=14w
m < n * y

and that it is faster than the naive matrix multiplication algorithm for

k=B +k—Da)—1
m > max {n EDa-p n1+"(l)}.

For k = 2, these bounds coincide with the bounds obtained in Section 3. For k = 3,
with the best available bounds on w, @ and 8, we get that SCMP is the fastest
algorithm when n'** < m < n'“*. For smaller values of m the naive algorithm is
the fastest, while for larger values of m the fast dense algorithm is the fastest. Sadly,
for k > 4, with the current values of w, « and B, the new algorithm never improves
on both the naive and the dense algorithms. But, this may change if improved
bounds on w, and especially on «, are obtained.

5. Concluding Remarks and Open Problems

We obtained an improved algorithm for the multiplication of two sparse matrices.
The algorithm does not rely on any specific structure of the matrices to be multiplied,

12 R. YUSTER AND U. ZWICK

just on the fact that they are sparse. The algorithm essentially partitions the matrices
to be multiplied into a dense part and a sparse part and uses a fast algebraic algorithm
to multiply the dense parts, and the naive algorithm to multiply the sparse parts.
We also discussed the possibility of extending the ideas to the product of £k > 3
matrices. For k = 3, we obtained some improved results. The new algorithms were
presented for square matrices. It is not difficult, however, to extend them to work
on rectangular matrices.

The most interesting open problem is whether it is possible to speed up the
running time of other operations on sparse matrices. In particular, is it possible to
compute the transitive closure of a directed graph on n vertices with m edges in,
say, O(m'~¢n!*€) time, for some € > 0?

REFERENCES

ALON, N., YUSTER, R., AND ZWICK, U. 1995. Color-coding. J. ACM 42, 844-856.

ALON, N., YUSTER, R., AND ZWICK, U. 1997. Finding and counting given length cycles. Algorithmica 17,
209-223.

BURGISSER, P., CLAUSEN, M., AND SHOKROLLAHI, M. 1997. Algebraic complexity theory. Springer-
Verlag, New York.

CHAN, T. 2002. Dynamic subgraph connectivity with geometric applications. In Proceedings of 34th
Symposium on the Theory of Computing. ACM, New York, 7-13.

CHERIYAN, J. 1997. Randomized O(M(|V])) algorithms for problems in matching theory. SIAM J.
Comput. 26, 1635-1655.

CHIN, F. 1978. An O(n) algorithm for determining a near-optimal computation order of matrix chain
products. Commun. ACM 21,7, 544-549.

COHEN, E. 1997. Size-estimation framework with applications to transitive closure and reachability. J.
Comput. Syst. Sciences 55, 3, 441-453.

CoHN, H., AND UMANS, C. 2003. A group-theoretic approach to fast matrix multiplication. In Pro-
ceedings of 44th Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los
Alamitos, Calif., 438—449.

COPPERSMITH, D. 1997. Rectangular matrix multiplication revisited. J. Complex. 13, 42—49.

COPPERSMITH, D., AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressions. J. Symb.
Comput. 9,251-280.

CORMEN, T., LEISERSON, C., RIVEST, R., AND STEIN, C. 2001. [Introduction to Algorithms, Second ed.
The MIT Press, Cambridge, Mass.

DEMETRESCU, C., AND ITALIANO, G. 2000. Fully dynamic transitive closure: Breaking through the O n?)
barrier. In Proceedings of 41st Symposium on Foundations of Computer Science. IEEE Computer Society
Press, Los Alamitos, Calif., 381-389.

EISENBRAND, F., AND GRANDONIL F. 2003. Detecting directed 4-cycles still faster. Inf. Proc. Lett. 87, 1,
13-15.

GUSTAVSON, F. 1978. Two fast algorithms for sparse matrices: Multiplication and permuted transposi-
tion. ACM Trans. Math. Softw. 4, 3, 250-269.

Hu, T., AND SHING, M. 1982. Computation of matrix chain products I. SIAM J. Comput. 11,2, 362-373.

Hu, T., AND SHING, M. 1984. Computation of matrix chain products II. SIAM J. Comput. 13,2,228-251.

HUANG, X., AND PAN, V. 1998. Fast rectangular matrix multiplications and applications. J. Complex. 14,
257-299.

KRATSCH, D., AND SPINRAD, J. 2003. Between O(nm) and O (n*). In Proceedings of 14th Symposium
on Discrete Algorithms. ACM, New York, 709-716.

MUCHA, M., AND SANKOWSKI, P. 2004a. Maximum matchings in planar graphs via gaussian elimination.
In Proceedings of 12th ESA, 532-543.

MUCHA, M., AND SANKOWSKIL, P. 2004b. Maximum matchings via gaussian elimination. In Proceedings
of 45th Symposium on Foundations of Computer Science. IEEE Computer Society Press, Los Alamitos,
Calif., 248-255.

MULMULEY, K., VAZIRANI, U. V., AND VAZIRANI, V. V. 1987. Matching is as easy as matrix inversion.
Combinatorica 7, 105-113.

Fast Sparse Matrix Multiplication 13

NESETRIL, J., AND POLJAK, S. 1985. On the complexity of the subgraph problem. Comment. Math. Univ.
Carol. 26, 2,415-419.

PAN, V. 1985. How to multiply matrices faster. In Lecture Notes in Computer Science, vol. 179. Springer-
Verlag, New York.

RABIN, M., AND VAZIRANI, V. 1989. Maximum matchings in general graphs through randomization. J.
Alg. 10, 557-567.

RAz,R. 2003. On the complexity of matrix product. SIAM J. Comput. 32, 1356-1369.

RODITTY, L., AND ZWICK, U. 2002. Improved dynamic reachability algorithms for directed graphs. In
Proceedings of 43rd Symposium on Foundations of Computer Science. IEEE Computer Society Press,
Los Alamitos, Calif., 679—-688.

SEIDEL, R. 1995. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput.
Syst. Sci. 51, 400-403.

SHOSHAN, A., AND ZWICK, U. 1999. All pairs shortest paths in undirected graphs with integer weights.
In Proceedings of 40th Symposium on Foundations of Computer Science. IEEE Computer Society Press,
Los Alamitos, Calif., 605-614.

SHPILKA, A. 2003. Lower bounds for matrix product. SIAM J. Comput. 32, 1185-1200.

STRASSEN, V. 1969. Gaussian elimination is not optimal. Numer. Math. 13, 354-356.

YUSTER, R., ANDZWICK, U. 2004. Detecting shortdirected cycles using rectangular matrix multiplication
and dynamic programming. In Proceedings of 15th Symposium on Discrete Algorithms. ACM, New York,
247-253.

ZWICK, U. 2002. All-pairs shortest paths using bridging sets and rectangular matrix multiplication. J.
ACM 49, 289-317.

RECEIVED JUNE 2004; REVISED APRIL 2005; ACCEPTED APRIL 2005

ACM Transactions on Algorithms, Vol. 1, No. 1, July 2005.

