import Control.Concurrent hiding (readMVar)
import Control.Monad
import Haste.DOM
import Haste.Events
import Haste.Foreign
import Haste.JSString (pack)
import Data.Graph.Inductive.Graph hiding (Node)
import qualified Data.Graph.Inductive.Graph as G
import Data.Graph.Inductive.PatriciaTree
import Data.List
import Data.Maybe
import qualified Data.Map.Strict as M
import Data.Tree
import Control.Arrow
import Text.Parsec
Deduced again (naturally)
When mathematicians first studied formal logic, they built Hilbert systems, where proving theorems corresponds to programming with combinators.
APL and its ilk show the power of this approach. However, some functions are easier to describe if we can name their arguments. In logic, analogous concerns drove Gentzen to devise natural deduction:
Level 1:Show yourself! Theorem:
⇒I
Undo ⋯
See Also
-
Implicational propositional calculus. Along with a false proposition, the three rules ⇒I , ⇒E, and LEM suffice for classical propositional logic. LEM is equivalent to Peirce’s law, which means we can remove false from the axioms completely.
-
Abandoning LEM makes sense for programming languages based on lambda calculus. Roughly speaking, LEM means two wrongs make a right. For instance, if
f
is a function that takes an integer but is buggy then LEM is sort of claiming we can feedf
to another buggy function to somehow cancel out the bugs and magically produce an integer! On the other hand, LEM makes sense in lambda-mu calculus.
Ideas
-
Intuitionistic natural deduction satisfies the subformula property: a theorem can be proved solely from hypotheses that appear somewhere in the theorem.
We could add some levels where the theorem is shown as a tree, and the player can select subtrees to create hypotheses.
-
Theorems proved in previous levels ought to be available in later levels.
-
We could add ∀ and ∃ for first-order logic. Or add Π and Σ types and move towards homotopy type theory. Or both!
-
Show the Haskell equivalent of a proof.
A Haste Bug
We use Data.Graph.Inductive.Graph
to store the proofs in progress.
Unfortunately,
a Haste bug complicates
installing this package. Hopefully this will be fixed soon, but for now:
-
Run
haste-cabal install fgl
. This fails. -
Extract the contents of the
fgl
package’s archive. -
Remove all lines containing
ANN
from all source files. -
Re-archive the files and replace the original.
-
Re-run
haste-cabal install fgl
.
Tree drawing
We copy our tree drawing code, and extend it to handle nodes of variable width, as well as nodes with only one child.
data RT a = RT { xpos :: Int
, shift :: Int
, hold :: a
, link :: Maybe (Int, RT a)
, kids :: [RT a]
} deriving Show
addx :: Int -> RT a -> Tree (Int, a)
addx i rt = Node (xpos rt + shift rt + i, hold rt) $
addx (i + shift rt) <$> kids rt
padding :: Int -- Minimum horizontal gap between nodes.
padding = 50
placeRT :: (a -> Int) -> Tree a -> RT a
placeRT _ (Node a []) = RT 0 0 a Nothing []
placeRT width (Node a [k]) = RT (xpos r) 0 a Nothing [r]
where r = placeRT width k
placeRT width (Node a [l, r]) = RT m 0 a Nothing xs where
[ll, rr] = placeRT width <$> [l, r]
g = padding - minimum (zipWith (-)
(contour (((-1) *) . width) head (0, rr)) (contour width last (0, ll)))
s = xpos ll + xpos rr
gap = abs g + mod (abs g + s) 2 -- Adjust so midpoint is whole number.
m = div (s + gap) 2
xs = if g >= 0 then weave ll rr { shift = gap }
else weave ll { shift = gap } rr
placeRT _ _ = error "binary trees only please"
drawRT :: (a -> Int) -> Tree a -> Tree (Int, a)
drawRT width = addx 0 . placeRT width
contour :: (a -> Int) -> ([RT a] -> RT a) -> (Int, RT a) -> [Int]
contour width f (acc, rt) = h : case kids rt of
[] -> maybe [] (contour width f . first (+ acc')) (link rt)
ks -> contour width f (acc', f ks)
where acc' = acc + shift rt
h = acc'+ xpos rt + width (hold rt)
weave :: RT a -> RT a -> [RT a]
weave l r = [weave' id (0, l) (0, r), weave' reverse (0, r) (0, l)]
weave' :: ([RT a] -> [RT a]) -> (Int, RT a) -> (Int, RT a) -> RT a
weave' f (accL, l) (accR, r)
| Nothing <- follow = l
| Just (dx, x) <- link l = l { link = Just (dx, weave' f (dx + accL', x) y) }
| (k:ks) <- f $ kids l = l { kids = f $ weave' f (accL', k) y : ks }
| otherwise = l { link = first (+(-accL')) <$> follow }
where
accL' = accL + shift l
accR' = accR + shift r
follow | (k:_) <- f $ kids r = Just (accR', k)
| otherwise = first (accR' +) <$> link r
Just y = follow
Expression parser
In free play mode, the player can type in arbitrary hypotheses, which we
read using parser combinators. The OrHalf
is a
special value that the ∨-elimination rule puts in a placeholder node in
order to keep the tree binary.
data Expr = Expr :-> Expr | Expr :& Expr | Expr :+ Expr
| Var String | Bot | Top
| OrHalf deriving Eq
instance Show Expr where
show OrHalf = "\x2228"
show Bot = "⊥"
show Top = "⊤"
show (Var s) = s
show (x :-> y) = showL x ++ "\x21d2" ++ show y where
showL e = case e of
_ :-> _ -> "(" ++ show e ++ ")"
_ -> show e
show (x :& y) = showAnd x ++ "\x2227" ++ showAnd y where
showAnd t@(_ :-> _) = "(" ++ show t ++ ")"
showAnd t@(_ :+ _) = "(" ++ show t ++ ")"
showAnd t = show t
show (x :+ y) = showOr x ++ "\x2228" ++ showOr y where
showOr t@(_ :-> _) = "(" ++ show t ++ ")"
showOr t = show t
type Parser = Parsec String ()
proposition :: Parser Expr
proposition = spaces >> expr <* eof where
expr = atm `chainl1` and' `chainl1` or' `chainr1` imp
atm = between (sp $ char '(') (sp $ char ')') expr <|> do
s <- sp $ many1 alphaNum
pure $ case s of
"0" -> Bot
"1" -> Top
_ -> Var s
imp = sp (string "->" <|> string "=>") >> pure (:->)
and' = sp (string "&" <|> string "*") >> pure (:&)
or' = sp (string "|" <|> string "+") >> pure (:+)
sp = (<* spaces)
parseProp :: String -> Expr
parseProp s = x where Right x = parse proposition "" s
Levels
We look up a level’s specifications from an association list.
A hidden element in the HTML file stores level titles, hints, and victory messages.
data Level = Level Expr [Expr] String | FreePlay
getLevel :: Int -> Level
getLevel n
| Just ((goal, hs), rules) <- lookup n lvls
= Level (parseProp goal) (parseProp <$> hs) rules
| otherwise = FreePlay
where
lvls = zip [1..] $
[ (("a->a", ["a"]), "impliesI")
, (("a->b->a", ["a", "b"]), "impliesI")
, (("a->(a->b)->b", ["a", "a->b"]), "impliesI impliesE")
, (("(a->b->c)->(a->b)->a->c", ["a","a","a->b","a->b->c"]), "impliesI impliesE")
] ++ (`zip` (repeat "classy"))
[ ("((a->0)->0)->a", ["a->0","(a->0)->0"])
, ("0->a", ["0","a->0","a->0"])
, ("(a->0)->a->b", ["a","a->0","b->0","b->0"])
, ("((a->0)->a)->a", ["a->0","a->0","(a->0)->a"])
, ("((a->b)->a)->a", ["a","a->0","a->0","b->0","b->0","(a->b)->a"])
, ("((a->b)->c)->((c->a)->(d->a))", ["a","a->0","a->0","b->0","b->0","d","c->a","(a->b)->c"])
] ++
[ (("a&b->b", ["a&b"]), "impliesI impliesE and1E and2E")
, (("a&b->b&a", ["a&b","a&b"]), "impliesI impliesE andI and1E and2E")
, (("a->a+b", ["a","b"]), "impliesI impliesE or1I or2I orE")
, (("a+b->b+a", ["a+b","a","a","b","b"]), "impliesI impliesE or1I or2I orE")
, (("(a->c)->(b->c)->a+b->c", ["a", "b", "a->c", "b->c", "a+b"]), "impliesI impliesE or1I or2I orE")
] ++ (`zip` (repeat "intu"))
[ ("0->a", ["0", "a"])
, ("(a+(a->0)->0)->0", ["a","a","a->0","a+(a->0)->0","a+(a->0)->0"])
, ("a+b->(a->b)->b", ["a+b","a","b","a->b","a->b"])
, ("((((a->b)->b)->a+b)->0)->0", ["a","a","b","b","(a->b)->b","(a->b)->b","(((a->b)->b)->a+b)->0","(((a->b)->b)->a+b)->0"])
, ("a&b+a&c->a&(b+c)", ["b","c","a&b","a&b","a&c","a&c","a&b+a&c"])
, ("a&(b+c)->a&b+a&c", ["b","c","a&b","a&c","a&(b+c)","a&(b+c)","a&(b+c)"])
]
More Haste workarounds
The Haste.DOM
functions handle SVG poorly, so we provide workarounds.
The readMVar
function causes compile errors so we supply our own.
newElemSVG :: String -> IO Elem
newElemSVG = ffi $ pack $
"(x => document.createElementNS('http://www.w3.org/2000/svg', x))"
getChildrenSVG :: Elem -> IO [Elem]
getChildrenSVG = ffi $ pack $ concat ["(function(e){var ch = [];",
"for(e = e.firstChild; e != null; e = e.nextSibling)",
"{ch.push(e);}return ch;})"]
readMVar :: MVar a -> IO a
readMVar v = do
x <- takeMVar v
putMVar v x
pure x
Tedium
Clunky UI code unfortunately intertwined with the rules of inference.
A proof in progress is a forest along with a record of all discharges. We represent the forest with an inductive graph which is well-suited for handling player clicks on any node.
With each edge, we associate an SVG line as well as an integer so out-edges are ordered.
We record the step that discharges a hypothesis, but we have no use for this information yet.
type Grx = Gr (Elem, Expr) (Elem, Int)
type Dis = M.Map G.Node G.Node
type Proof = (Grx, Dis)
halfWidth :: Expr -> Int
halfWidth x = 6 * (length $ show x)
rootOf :: Grx -> G.Node -> G.Node
rootOf g h = case pre g h of
[] -> h
[t] -> rootOf g t
_ -> undefined
foliage :: Grx -> G.Node -> [G.Node]
foliage g y | null ss = [y]
| otherwise = concatMap (foliage g) ss
where ss = suc g y
nodeElem :: Grx -> G.Node -> Elem
nodeElem g = fst . fromJust . lab g
nodeExpr :: Grx -> G.Node -> Expr
nodeExpr g = snd . fromJust . lab g
xbounds :: Grx -> Tree (Int, G.Node) -> (Int, Int)
xbounds g (Node (x, n) ks) = foldl1' mm $ (x - w, x + w) : (xbounds g <$> ks)
where
w = halfWidth $ nodeExpr g n
mm = uncurry (***) . (min *** max)
drawGr :: Grx -> G.Node -> Tree (Int, G.Node)
drawGr g node = drawRT (halfWidth . nodeExpr g) $ fromGraph node where
fromGraph n = Node n $ fromGraph . fst <$> sortOn (snd . snd) (lsuc g n)
discharge :: Grx -> G.Node -> G.Node -> Dis -> Dis
discharge g x y dis = M.union dis $ M.fromList $ zip xs $ repeat y where
xs = filter ((== nodeExpr g x) . nodeExpr g) (foliage g $ rootOf g x)
elemjs :: Elem -> String -> IO ()
elemjs e s = (ffi $ pack s :: Elem -> IO ()) e
defaultNode :: Elem -> IO ()
defaultNode e = do
setStyle e "cursor" ""
elemjs e "e => e.childNodes[0].setAttribute('stroke','grey')"
elemjs e "e => e.childNodes[0].setAttribute('stroke-dasharray','1,1')"
elemjs e "e => e.childNodes[1].removeAttribute('fill')"
hypNode :: Elem -> IO ()
hypNode e = do
setStyle e "cursor" "pointer"
elemjs e "e => e.childNodes[1].setAttribute('fill','red')"
elemjs e "e => e.childNodes[0].removeAttribute('stroke-dasharray')"
elemjs e "e => e.childNodes[0].setAttribute('stroke','blue')"
rootNode :: Elem -> IO ()
rootNode e = do
setStyle e "cursor" "pointer"
elemjs e "e => e.childNodes[0].setAttribute('stroke','black')"
elemjs e "e => e.childNodes[0].removeAttribute('stroke-dasharray')"
elemjs e "e => e.childNodes[0].setAttribute('stroke','blue')"
draw :: Elem -> Int -> Grx -> Int -> Tree (Int, G.Node) -> IO ()
draw soil x0 g y (Node (x, n) ks) = do
setAttr (nodeElem g n) "transform" $ "translate" ++ show (x0 + x, -40*y)
mapM_ (draw soil x0 g $ y + 1) ks
enableRule :: Elem -> IO ()
enableRule e = do
setStyle e "border" "2px solid blue"
setStyle e "color" "black"
disableRule :: Elem -> IO ()
disableRule e = do
setStyle e "border" "1px dotted grey"
setStyle e "color" "grey"
selectNode :: Elem -> IO ()
selectNode = ffi $ pack $ "e => e.childNodes[0].setAttribute('fill','yellow')"
ageNode :: Elem -> IO ()
ageNode = ffi $ pack $ "e => e.childNodes[0].setAttribute('fill','orange')"
deselectNode :: Elem -> IO ()
deselectNode = ffi $ pack $ "e => e.childNodes[0].setAttribute('fill','white')"
theorem :: Proof -> Maybe Expr
theorem (g, dis) | null live, [t] <- tips = Just $ nodeExpr g t
| otherwise = Nothing
where
live = filter (`M.notMember` dis) $ filter (null . suc g) $ nodes g
tips = filter (null . pre g) $ nodes g
mustEldest :: Elem -> IO Elem
mustEldest = fmap fromJust . getFirstChild
main :: IO ()
main = withElems
[ "soil", "winBar", "ruleBar", "hypoT", "newHypoB", "errT", "msgsDiv"
, "impliesI", "impliesE", "notNot"
, "andI", "and1E", "and2E", "or1I", "or2I", "orE", "falseE"
, "againB", "nextB", "hintB", "hintT", "undoB", "hypoDiv", "preT", "postT"
, "homeB", "homeB2", "backB", "homeTab", "gameTab"] $
\[ soil, winBar, ruleBar, hypoT, newHypoB, errT, msgsDiv
, impliesI, impliesE, notNot , andI, and1E, and2E, or1I, or2I, orE, falseE
, againB, nextB, hintB, hintT, undoB, hypoDiv, preT, postT
, homeB, homeB2, backB, homeTab, gameTab] -> do
styleElem <- newElem "style"
[headElem] <- elemsByQS document "head"
appendChild styleElem =<< newTextElem (concat
[ ".logic{cursor:pointer;border:2px solid blue;"
, "border-radius:10px;padding:5px;margin:5px;}"
, ".warpButton{cursor:pointer;border:2px solid blue;border-radius:5px;"
, "padding:5px;margin:10px;font-size:150%;text-align:center;"
, "width:2em;display:inline-grid;}"
, ".warpButton:hover{background-color:lightblue;}"
, ".winbutton{cursor:pointer;border:4px solid blue;border-radius:10px;"
, "padding:5px;margin:10px;font-size:400%}"
])
appendChild headElem styleElem
msgsDivKids <- getChildren =<< mustEldest =<< mustEldest msgsDiv
msgs <- forM msgsDivKids $ \e -> do -- Title, hint, victory message.
ol <- getChildren =<< mustEldest . (!!1) =<< getChildren e
eldest <- mustEldest e
mapM (`getProp` "innerHTML") $ eldest : ol
let
classicRules = [impliesI, impliesE, notNot]
intuRules =
[impliesI, impliesE, andI, and1E, and2E, or1I, or2I, orE, falseE]
allRules = classicRules ++ intuRules
sel <- newMVar []
proof <- newMVar (mkGraph [] [], M.empty)
acts <- newMVar []
history <- newMVar []
level <- newMVar undefined -- Replaced later by `setup`.
let
resetActs = swapMVar acts [] >>=
mapM_ (\(e, h) -> disableRule e >> unregisterHandler h)
nodeClick i = do
(g, dis) <- readMVar proof
when (null (suc g i) && M.notMember i dis || null (pre g i)) $ select g i
activate :: Elem -> (Proof -> IO Proof) -> IO ()
activate e f = do
enableRule e
h <- e `onEvent` Click $ const $ do
resetActs
prf <- f =<< load
save prf
case theorem prf of
Just t -> do
n <- readMVar level
case getLevel n of
Level goal _ _ -> if t == goal then do
setProp postT "innerHTML" $ msgs!!(n - 1)!!2
setStyle winBar "visibility" "visible"
setStyle ruleBar "display" "none"
setStyle hintB "display" "none"
else
setProp postT "innerHTML" $ "Proved " ++ show t
++ " but we want " ++ show goal
_ -> setProp postT "innerHTML" $ "Proved " ++ show t
_ -> setProp postT "innerHTML" ""
modifyMVar_ acts $ pure . ((e, h):)
ghost x y t (g, dis) = do
deleteChild soil $ nodeElem g x
g1 <- delNode x . snd <$> newProp g [y] t
pure (g1, dis)
dSpawn x y t (g, dis) = do
(k, g1) <- newProp g [y] t
pure (g1, discharge g1 x k dis)
spawn ks t (g, dis) = do
g1 <- snd <$> newProp g ks t
pure (g1, dis)
select g i = do
let e = nodeElem g i
xs0 <- takeMVar sel
xs <- if elem i xs0
then do
deselectNode e
case delete i xs0 of
[] -> pure []
xs1@(h:_) -> do
selectNode $ nodeElem g h
pure xs1
else do
forM_ xs0 $ ageNode . nodeElem g
selectNode e
pure $ i:xs0
putMVar sel xs
resetActs
let
exprOf = nodeExpr g
isRoot = null . pre g
isLeaf = null . suc g
impi
| [y, x] <- xs, isLeaf x, isRoot x, isRoot y
-- [Del x, New x [y] $ exprOf x :-> exprOF y]
= [(impliesI, ghost x y $ exprOf x :-> exprOf y)]
| [x] <- xs, isLeaf x, y <- rootOf g x
= [(impliesI, dSpawn x y $ exprOf x :-> exprOf y)]
| [y] <- filter isRoot xs, [x] <- delete y xs, rootOf g x == y
= [(impliesI, dSpawn x y $ exprOf x :-> exprOf y)]
-- [Dis x, New x [y] $ exprOf x :-> exprOF y]
| otherwise = []
mopo
| [x, y] <- xs, isRoot x, isRoot y, a :-> b <- exprOf y, a == exprOf x
= [(impliesE, spawn [x, y] b)]
| [x, y] <- xs, isRoot x, isRoot y, a :-> b <- exprOf x, a == exprOf y
= [(impliesE, spawn [y, x] b)]
| otherwise = []
lem
| ([y], [x]) <- partition isRoot xs, y == rootOf g x,
Bot <- exprOf y, t :-> Bot <- exprOf x
= [(notNot, dSpawn x y t)]
| [x] <- xs, isLeaf x, y <- rootOf g x,
Bot <- exprOf y, t :-> Bot <- exprOf x
= [(notNot, dSpawn x y t)]
| otherwise = []
conj
| [y, x] <- xs, isRoot x, isRoot y
= [(andI, spawn [x, y] $ exprOf x :& exprOf y)]
| [x] <- xs, isRoot x, l :& r <- exprOf x
= [(and1E, spawn [x] l), (and2E, spawn [x] r)]
| otherwise = []
disj
| [y, x] <- xs, isLeaf x, isRoot x, isRoot y
= [(or1I, ghost x y $ exprOf y :+ exprOf x),
(or2I, ghost x y $ exprOf x :+ exprOf y)]
| length xs == 3 = take 1 $ concatMap orCheck $ permutations xs
| otherwise = []
orCheck [x, y, z]
| isLeaf x, isLeaf y, rx <- rootOf g x, ry <- rootOf g y,
exprOf x :+ exprOf y == exprOf z, t <- exprOf rx,
rx /= ry, t == exprOf ry
= [(orE, \(g0, dis0) -> do
(k, g1) <- newProp g0 [rx, ry] OrHalf
g2 <- snd <$> newProp g1 [z, k] t
pure (g2, discharge g0 y k $ discharge g0 x k dis0))]
orCheck _ = []
efq
| [y, x] <- xs, Bot <- exprOf y = [(falseE, ghost x y $ exprOf x)]
| [x, y] <- xs, Bot <- exprOf y = [(falseE, ghost x y $ exprOf x)]
| otherwise = []
mapM_ (uncurry activate) $ concat [impi, mopo, lem, conj, disj, efq]
-- | Reads proof from MVar. Records it to undo history. Clears selection.
load = do
enableRule undoB
p@(g, _) <- takeMVar proof
swapMVar sel [] >>= mapM_ (deselectNode . nodeElem g)
modifyMVar_ history $ pure . (p:)
pure p
translate :: Parser (String, String)
translate = do
void $ string "translate("
x <- many1 (digit <|> char '-')
void $ string ","
y <- many1 (digit <|> char '-')
void $ string ")"
pure (x, y)
-- | Saves proof to MVar. Draws it.
save (g, dis) = do
putMVar proof (g, dis)
let
f [] d acc = pure (acc, d)
f (r:rs) d acc = do
draw soil (acc - x0) g 0 drawing
f rs (max d dep) $ acc + x1 - x0 + 25
where
drawing = drawGr g r
(x0, x1) = xbounds g drawing
dep = length $ levels drawing
(bx1, by1) <- f (filter (null . pre g) $ nodes g) 0 0
forM_ (labEdges g) $ \(i, j, (l, _)) -> do
Right (x1, y1) <- parse translate "" <$> getAttr (nodeElem g i) "transform"
Right (x2, y2) <- parse translate "" <$> getAttr (nodeElem g j) "transform"
setAttr l "x1" x1
setAttr l "y1" y1
setAttr l "x2" x2
setAttr l "y2" y2
forM_ (nodes g) $ \i -> let e = nodeElem g i in
when (nodeExpr g i /= OrHalf) $ do
defaultNode e
when (null (suc g i) && M.notMember i dis) $ hypNode e
when (null $ pre g i) $ rootNode e
setAttr soil "viewBox" $ "-5 " ++ show (-40 * by1) ++ " "
++ show (bx1) ++ " " ++ show (40*by1 + 40)
newProp g qs t = do
let k = if isEmpty g then 0 else snd (nodeRange g) + 1
e <- newElemSVG "g"
let w = halfWidth t
er <- newElemSVG "rect" `with`
[ attr "width" =: show (2 * w)
, attr "height" =: "24"
, attr "fill" =: "white"
, attr "stroke" =: "black"
, attr "x" =: show (-w)
, attr "y" =: "-12"
, attr "rx" =: "4"
, attr "ry" =: "4"
]
when (t == OrHalf) $ do
setAttr er "stroke" "none"
setAttr er "fill" "none"
appendChild e er
when (t /= OrHalf) $ do
et <- newElemSVG "text" `with`
[ attr "x" =: "0"
, attr "y" =: "0"
, attr "text-anchor" =: "middle"
, attr "alignment-baseline" =: "central"
, prop "textContent" =: show t
]
appendChild e et
appendChild soil e
void $ e `onEvent` Click $ const $ nodeClick k
ls <- replicateM (length qs) $ newElemSVG "line" `with`
[ attr "stroke" =: "black" ]
ks <- getChildrenSVG soil
setChildren soil $ ls ++ ks
pure (k, insEdges [(k, q, ln) | (q, ln) <- zip qs $ zip ls [0..]] $
insNode (k, (e, t)) g)
addHypo t = do
(g0, dis0) <- load
(k, g1) <- newProp g0 [] t
let dis1 = if t == Top then M.insert k k dis0 else dis0
save (g1, dis1)
void $ undoB `onEvent` Click $ const $ do
hist <- readMVar history
case hist of
[] -> pure ()
((g, dis):rest) -> do
void $ load
let
ls = (\(_, _, (l, _)) -> l) <$> labEdges g
ks = fst . snd <$> labNodes g
setChildren soil $ ls ++ ks
setProp errT "innerHTML" ""
setProp postT "innerHTML" ""
save (g, dis)
when (null rest) $ disableRule undoB
void $ swapMVar history rest
void $ newHypoB `onEvent` Click $ const $ do
s <- getProp hypoT "value"
case parse proposition "" s of
Right x -> do
setProp errT "innerHTML" ""
addHypo x
Left err -> setProp errT "innerHTML" $ show err
let
ruleset "intu" = pure intuRules
ruleset "classy" = pure classicRules
ruleset names = catMaybes <$> mapM elemById (words names)
setup n = do
void $ swapMVar level n
forM_ allRules disableRule
void $ swapMVar proof (mkGraph [] [], M.empty)
void $ swapMVar sel []
clearChildren soil
setStyle winBar "visibility" "hidden"
setStyle ruleBar "display" ""
case getLevel n of
Level goal hs rules -> do
setStyle hintB "display" ""
setProp hintT "innerHTML" ""
forM_ allRules $ \e -> setStyle e "display" "none"
setStyle hypoDiv "display" "none"
ruleset rules >>= mapM_ (\e -> setStyle e "display" "")
mapM_ addHypo hs
setProp preT "innerHTML" $ concat
[ "<p>Level "
, show n
, ":<i>"
, msgs!!(n - 1)!!0
, "</i></p><p><b>Theorem</b>:"
, "<div style='text-align:center;font-size:150%'><span>"
, show goal
, "</span></div>"
, "</p><b>Proof:</b>"
]
setProp postT "innerHTML" ""
FreePlay -> do
setStyle hintB "display" "none"
setProp hintT "innerHTML" ""
forM_ allRules $ \e -> setStyle e "display" ""
setStyle hypoDiv "display" ""
setProp preT "innerHTML" "<h2>Free Play</h2><p>Type '=>' or '->' for implication, '0' and '1' for false and true.</p>"
setProp postT "innerHTML" ""
disableRule undoB
void $ swapMVar history []
void $ nextB `onEvent` Click $ const $ do
n <- takeMVar level
putMVar level $ n + 1
setup $ n + 1
void $ againB `onEvent` Click $ const $ setup =<< readMVar level
void $ hintB `onEvent` Click $ const $ do
n <- readMVar level
setStyle hintB "display" "none"
setProp hintT "innerHTML" $ msgs!!(n - 1)!!1
void $ homeB `onEvent` Click $ const $ do
setStyle gameTab "display" "none"
setStyle homeTab "display" ""
void $ homeB2 `onEvent` Click $ const $ do
setStyle gameTab "display" "none"
setStyle homeTab "display" ""
let
addWarp n = do
e <- newElem "div" `with`
[ attr "class" =: "warpButton"
, prop "innerHTML" =: show n
]
appendChild homeTab e
void $ e `onEvent` Click $ const $ do
setStyle gameTab "display" ""
setStyle homeTab "display" "none"
setup n
void $ backB `onEvent` Click $ const $ do
setStyle homeTab "display" "none"
setStyle gameTab "display" ""
forM_ [1..22] addWarp
setup 1