Minimum Viable Product

What features would make our compiler friendlier? My biggest gripes are that symbols must be defined before use, a finicky parser that lacks support for indentation rules, and pathetic error handling.

We work on the first two problems, and make a tiny dent on the third, while taking care of a few other issues. This leads to a compiler that I found surprisingly usable, at least when I could spot mistakes on my own.

Mutually

C requires symbols to be declared before use. Our compilers are fussier still, as they require symbols to be completely defined before use. This irks programmers, especially when mutual recursion is desired, and also irks our compilers, because we must process functions and instance methods in the order they appear. This is particularly annoying when the two are interleaved.

Supporting arbitrary orderings of definitions requires changing multiple stages of our compiler.

We break type inference into 3 steps:

  1. As we parse, we generate the type and abstract syntax tree of each data constructor and each typeclass method, adding them to pre-defined primitives.

  2. We infer the types of top-level definitions. For this stage, we construct a dependency graph (that is, we determine the symbols required by each symbol) then find its strongly connected components. Each member of a component mutually depends on each other member, and we infer their types together. Our inferno function continually piles on more type constraints for each member of a component, and only resolves them after all have been processed.

  3. We infer the type of instance method definitions, and check they are correct. A later compiler supports default class method definitions, which are also handled in this phase.

During code generation, we no longer know the address of a dependent symbol. Instead, we must leave space for an address and fill it in later. We take advantage of lazy tying-the-knot style so the code appears to effortlessly solve this problem.

We also support definitions appearing in any order in a let block. This is trickier than at the top-level, because of shared variable bindings floating around. Again, we find the strongly connected components to detect mutual dependencies, but instead of a table of addresses, we apply simple lambda lifting. See Peyton Jones and Lester, Implementing Functional Languages: a tutorial, Chapter 6.

In brief, we order the members of each component arbitrarily and insert variables so they can all reach each other; we automate what we did by hand when writing mutually recursive functions for older versions of our compiler. For example:

let
  a = foo a b c
  b = bar a b c
  c = baz a b c
in qux a b c

is rewritten to the cycle-free:

let
  a b c = foo (a b c) (b c) c
  b c   = bar (a b c) (b c) c
  c     = baz (a b c) (b c) c
in qux (a b c) (b c) c

A triangle appears on the left-hand side, explaining our choice of function name, and while the idea is straightforward, the implementation is tedious because we recurse in all sorts of ways over the non-empty tails of lists of variables, such as and because we perform substitutions in the syntax tree while it still possibly contains case expressions and pattern matches.

As we now have a predefined Bool type, we use if-then-else instead of matching on True and False.

-- Mutual recursion.
infixr 9 .;
infixl 7 * , / , %;
infixl 6 + , -;
infixr 5 ++;
infixl 4 <*> , <$> , <* , *>;
infix 4 == , /= , <=;
infixl 3 && , <|>;
infixl 2 ||;
infixl 1 >> , >>=;
infixr 0 $;

foreign import ccall "putchar" putChar :: Int -> IO Int;
foreign import ccall "getchar" getChar :: IO Int;
foreign import ccall "getargcount" getArgCount :: IO Int;
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char;

class Functor f where { fmap :: (a -> b) -> f a -> f b };
class Applicative f where
{ pure :: a -> f a
; (<*>) :: f (a -> b) -> f a -> f b
};
class Monad m where
{ return :: a -> m a
; (>>=) :: m a -> (a -> m b) -> m b
};
(<$>) = fmap;
liftA2 f x y = f <$> x <*> y;
(>>) f g = f >>= \_ -> g;
class Eq a where { (==) :: a -> a -> Bool };
instance Eq Int where { (==) = intEq };
instance Eq Char where { (==) = charEq };
($) f x = f x;
id x = x;
const x y = x;
flip f x y = f y x;
(&) x f = f x;
class Ord a where { (<=) :: a -> a -> Bool };
instance Ord Int where { (<=) = intLE };
instance Ord Char where { (<=) = charLE };
data Ordering = LT | GT | EQ;
compare x y = if x <= y then if y <= x then EQ else LT else GT;
instance Ord a => Ord [a] where {
  (<=) xs ys = case xs of
    { [] -> True
    ; x:xt -> case ys of
      { [] -> False
      ; y:yt -> case compare x y of
        { LT -> True
        ; GT -> False
        ; EQ -> xt <= yt
        }
      }
    }
};
data Maybe a = Nothing | Just a;
data Either a b = Left a | Right b;
fpair (x, y) f = f x y;
fst (x, y) = x;
snd (x, y) = y;
uncurry f (x, y) = f x y;
first f (x, y) = (f x, y);
second f (x, y) = (x, f y);
not a = if a then False else True;
x /= y = not $ x == y;
(.) f g x = f (g x);
(||) f g = if f then True else g;
(&&) f g = if f then g else False;
flst xs n c = case xs of { [] -> n; h:t -> c h t };
instance Eq a => Eq [a] where { (==) xs ys = case xs of
  { [] -> case ys of
    { [] -> True
    ; _ -> False
    }
  ; x:xt -> case ys of
    { [] -> False
    ; y:yt -> x == y && xt == yt
    }
  }};
take n xs = if n == 0 then [] else flst xs [] \h t -> h:take (n - 1) t;
maybe n j m = case m of { Nothing -> n; Just x -> j x };
fmaybe m n j = case m of { Nothing -> n; Just x -> j x };
instance Functor Maybe where { fmap f = maybe Nothing (Just . f) };
instance Applicative Maybe where { pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf };
instance Monad Maybe where { return = Just ; mf >>= mg = maybe Nothing mg mf };
foldr c n l = flst l n (\h t -> c h(foldr c n t));
length = foldr (\_ n -> n + 1) 0;
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure []);
mapM_ f = foldr ((>>) . f) (pure ());
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0;
instance Applicative IO where { pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y) };
instance Monad IO where { return = ioPure ; (>>=) = ioBind };
instance Functor IO where { fmap f x = ioPure f <*> x };
putStr = mapM_ $ putChar . ord;
error s = unsafePerformIO $ putStr s >> putChar (ord '\n') >> exitSuccess;
undefined = error "undefined";
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l;
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a;
foldl1 f (h:t) = foldl f h t;
elem k xs = foldr (\x t -> x == k || t) False xs;
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
wrap c = c:[];
map = flip (foldr . ((:) .)) [];
instance Functor [] where { fmap = map };
concatMap = (concat .) . map;
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing;
all f = foldr (&&) True . map f;
any f = foldr (||) False . map f;
upFrom n = n : upFrom (n + 1);
zipWith f xs ys = flst xs [] $ \x xt -> flst ys [] $ \y yt -> f x y : zipWith f xt yt;
zip = zipWith (,);
data State s a = State (s -> (a, s));
runState (State f) = f;
instance Functor (State s) where { fmap f = \(State h) -> State (first f . h) };
instance Applicative (State s) where
{ pure a = State (a,)
; (State f) <*> (State x) = State \s -> fpair (f s) \g s' -> first g $ x s'
};
instance Monad (State s) where
{ return a = State (a,)
; (State h) >>= f = State $ uncurry (runState . f) . h
};
evalState m s = fst $ runState m s;
get = State \s -> (s, s);
put n = State \s -> ((), n);
either l r e = case e of { Left x -> l x; Right x -> r x };
instance Functor (Either a) where { fmap f e = case e of
  { Left x -> Left x
  ; Right x -> Right $ f x
  }
};
instance Applicative (Either a) where { pure = Right ; ef <*> ex = case ef of
  { Left s -> Left s
  ; Right f -> case ex of
    { Left s -> Left s
    ; Right x -> Right $ f x
    }
  }
};
instance Monad (Either a) where { return = Right ; ex >>= f = case ex of
  { Left s -> Left s
  ; Right x -> f x
  }
};

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex);

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex);

scc ins outs = let
  { depthFirst = snd . depthFirstSearch outs ([], [])
  ; spanning   = snd . spanningSearch   ins  ([], [])
  } in spanning . depthFirst;

filter f = foldr (\x xs -> if f x then x:xs else xs) [];
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys;
intersect xs ys = filter (\x -> fmaybe (find (x ==) ys) False (\_ -> True)) xs;

-- Map.

data Map k a = Tip | Bin Int k a (Map k a) (Map k a);
size m = case m of { Tip -> 0 ; Bin sz _ _ _ _ -> sz };
node k x l r = Bin (1 + size l + size r) k x l r;
singleton k x = Bin 1 k x Tip Tip;
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr;
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr);
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r);
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r);
balance k x l r = (if size l + size r <= 1
  then node
  else if 5 * size l + 3 <= 2 * size r
    then case r of
      { Tip -> node
      ; Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
      }
    else if 5 * size r + 3 <= 2 * size l
      then case l of
        { Tip -> node
        ; Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
          then singleR
          else doubleR
        }
      else node
  ) k x l r;
insert kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sz ky y l r -> case compare kx ky of
    { LT -> balance ky y (insert kx x l) r
    ; GT -> balance ky y l (insert kx x r)
    ; EQ -> Bin sz kx x l r
    }
  };
insertWith f kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sy ky y l r -> case compare kx ky of
    { LT -> balance ky y (insertWith f kx x l) r
    ; GT -> balance ky y l (insertWith f kx x r)
    ; EQ -> Bin sy kx (f x y) l r
    }
  };
mlookup kx t = case t of
  { Tip -> Nothing
  ; Bin _ ky y l r -> case compare kx ky of
    { LT -> mlookup kx l
    ; GT -> mlookup kx r
    ; EQ -> Just y
    }
  };
fromList = foldl (\t (k, x) -> insert k x t) Tip;

foldrWithKey f = let
  { go z t = case t of
    { Tip -> z
    ; Bin _ kx x l r -> go (f kx x (go z r)) l
    }
  } in go;

toAscList = foldrWithKey (\k x xs -> (k,x):xs) [];

-- Parsing.

data Type = TC String | TV String | TAp Type Type;
arr a b = TAp (TAp (TC "->") a) b;
data Extra = Basic Char | Const Int | ChrCon Char | StrCon String;
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat];
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred;
data Parser a = Parser (String -> Maybe (a, String));
data Constr = Constr String [Type];
data Pred = Pred String Type;
data Qual = Qual [Pred] Type;
noQual = Qual [];

data Neat = Neat
  -- | Instance environment.
  (Map String [Qual])
  -- | Either top-level or instance definitions.
  [Either (String, Ast) (String, (Qual, [(String, Ast)]))]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]
  ;
fneat (Neat a b c d e f) z = z a b c d e f;

ro = E . Basic;
conOf (Constr s _) = s;
specialCase (h:_) = '|':conOf h;
mkCase t cs = (specialCase cs,
  ( noQual $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
  , ro 'I'));
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", []);
scottEncode _ ":" _ = ro ':';
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs);
scottConstr t cs c = case c of { Constr s ts -> (s,
  ( noQual $ foldr arr t ts
  , scottEncode (map conOf cs) s $ mkStrs ts)) };
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs;

showInt' n = if 0 == n then id else (showInt' $ n/10) . ((:) (chr $ 48+n%10));
showInt n = if 0 == n then ('0':) else showInt' n;

mkFFIHelper n t acc = case t of
  { TC s -> acc
  ; TAp (TC "IO") _ -> acc
  ; TAp (TAp (TC "->") x) y -> L (showInt n "") $ mkFFIHelper (n + 1) y $ A (V $ showInt n "") acc
  };

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs;
addAdt t cs (Neat ienv fs typed dcs ffis exs) =
  Neat ienv fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis exs;
addClass classId v ms (Neat ienv fs typed dcs ffis exs) = let
  { vars = zipWith (\_ n -> showInt n "") ms $ upFrom 0
  } in Neat ienv fs (zipWith (\var (s, t) ->
    (s, (Qual [Pred classId v] t,
      L "@" $ A (V "@") $ foldr L (V var) vars))) vars ms ++ typed) dcs ffis exs;
addInst cl q ds (Neat ienv fs typed dcs ffis exs) =
  Neat (insertWith (++) cl [q] ienv) (Right (cl, (q, ds)):fs) typed dcs ffis exs;
addFFI foreignname ourname t (Neat ienv fs typed dcs ffis exs) =
  Neat ienv fs ((ourname, (Qual [] t, mkFFIHelper 0 t $ A (ro 'F') (ro $ chr $ length ffis))) : typed) dcs ((foreignname, t):ffis) exs;
addDefs ds (Neat ienv fs typed dcs ffis exs) = Neat ienv (map Left ds ++ fs) typed dcs ffis exs;
addExport e f (Neat ienv fs typed dcs ffis exs) = Neat ienv fs typed dcs ffis ((e, f):exs);

parse (Parser f) inp = f inp;
instance Applicative Parser where
{ pure x = Parser \inp -> Just (x, inp)
; (<*>) x y = Parser \inp -> case parse x inp of
  { Nothing -> Nothing
  ; Just (fun, t) -> case parse y t of
    { Nothing -> Nothing
    ; Just (arg, u) -> Just (fun arg, u)
    }
  }
};
instance Monad Parser where
{ return = pure
; (>>=) x f = Parser \inp -> case parse x inp of
  { Nothing -> Nothing
  ; Just (a, t) -> parse (f a) t
  }
};

sat' f = \h t -> if f h then Just (h, t) else Nothing;
sat f = Parser \inp -> flst inp Nothing (sat' f);

instance Functor Parser where { fmap f x = pure f <*> x };
(<|>) x y = Parser \inp -> fmaybe (parse x inp) (parse y inp) Just;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];

char c = sat (c ==);
between x y p = x *> (p <* y);
com = char '-' *> between (char '-') (char '\n') (many $ sat ('\n' /=));
sp = many ((wrap <$> (sat (\c -> (c == ' ') || (c == '\n')))) <|> com);
spc f = f <* sp;
spch = spc . char;
wantWith pred f = Parser \inp -> case parse f inp of
  { Nothing -> Nothing
  ; Just at -> if pred $ fst at then Just at else Nothing
  };
paren = between (spch '(') (spch ')');
small = sat \x -> ((x <= 'z') && ('a' <= x)) || (x == '_');
large = sat \x -> (x <= 'Z') && ('A' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
symbo = sat \c -> elem c "!#$%&*+./<=>?@\\^|-~";
varLex = liftA2 (:) small (many (small <|> large <|> digit <|> char '\''));
conId = spc (liftA2 (:) large (many (small <|> large <|> digit <|> char '\'')));
varId = spc $ wantWith (\s -> not $ elem s ["class", "data", "instance", "of", "where", "if", "then", "else"]) varLex;
opTail = many $ char ':' <|> symbo;
conSym = spc $ liftA2 (:) (char ':') opTail;
varSym = spc $ wantWith (not . (`elem` ["@", "=", "|", "->", "=>"])) $ liftA2 (:) symbo opTail;
con = conId <|> paren conSym;
var = varId <|> paren varSym;
op = varSym <|> conSym <|> between (spch '`') (spch '`') (conId <|> varId);
conop = conSym <|> between (spch '`') (spch '`') conId;
escChar = char '\\' *> ((sat (\c -> elem c "'\"\\")) <|> ((\c -> '\n') <$> char 'n'));
litOne delim = escChar <|> sat (delim /=);
litInt = Const . foldl (\n d -> 10*n + ord d - ord '0') 0 <$> spc (some digit);
litChar = ChrCon <$> between (char '\'') (spch '\'') (litOne '\'');
litStr = between (char '"') (spch '"') $ many (litOne '"');
lit = E <$> (StrCon <$> litStr <|> litChar <|> litInt);
sqLst r = between (spch '[') (spch ']') $ sepBy r (spch ',');
want f s = wantWith (s ==) f;
tok s = spc $ want (some (char '_' <|> symbo) <|> varLex) s;

gcon = conId <|> paren (conSym <|> (wrap <$> spch ',')) <|> ((:) <$> spch '[' <*> (wrap <$> spch ']'));

apat' r = PatVar <$> var <*> (tok "@" *> (Just <$> apat' r) <|> pure Nothing)
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> lit
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" []) <$> sqLst r
  <|> paren ((&) <$> r <*> ((spch ',' *> ((\y x -> PatCon "," [x, y]) <$> r)) <|> pure id))
  ;
pat = PatCon <$> gcon <*> many (apat' pat)
  <|> (&) <$> apat' pat <*> ((\s r l -> PatCon s [l, r]) <$> conop <*> apat' pat <|> pure id);
apat = apat' pat;

guards s r = tok s *> r <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  { V "True" -> \_ -> y
  ; _ -> A (A (A (V "if") x) y)
  }) <$> (spch '|' *> r) <*> (tok s *> r));
braceSep f = between (spch '{') (spch '}') (sepBy f (spch ';'));
joinIsFail t = A (L "join#" t) (V "fail#");
alts r = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->" r);
cas r = flip A <$> between (tok "case") (tok "of") r <*> alts r;
lamCase r = tok "case" *> alts r;
onePat vs x = Pa [(vs, x)];
lam r = spch '\\' *> (lamCase r <|> joinIsFail <$> liftA2 onePat (some apat) (tok "->" *> r));

flipPairize y x = A (A (V ",") x) y;
thenComma r = spch ',' *> ((flipPairize <$> r) <|> pure (A (V ",")));
parenExpr r = (&) <$> r <*> (((\v a -> A (V v) a) <$> op) <|> thenComma r <|> pure id);
rightSect r = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (wrap <$> spch ','))) <*> r;
section r = spch '(' *> (parenExpr r <* spch ')' <|> rightSect r <* spch ')' <|> spch ')' *> pure (V "()"));

isFreePat v = \case
  { PatLit _ -> False
  ; PatVar s m -> s == v || maybe False (isFreePat v) m
  ; PatCon _ args -> any (isFreePat v) args
  };

isFree v expr = case expr of
  { E _ -> False
  ; V s -> s == v
  ; A x y -> isFree v x || isFree v y
  ; L w t -> v /= w && isFree v t
  ; Pa vsts -> any (\(vs, t) -> not (any (isFreePat v) vs) && isFree v t) vsts
  };

overFree s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFree s f x) (overFree s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFree s f t'
  };

beta s t x = overFree s (const t) x;

maybeFix s x = if isFree s x then A (ro 'Y') (L s x) else x;

opDef x f y rhs = (f, onePat [x, y] rhs);

coalesce ds = flst ds [] \h@(s, x) t -> flst t [h] \(s', x') t' -> let
  { f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
  ; f _ _ = error "bad multidef"
  } in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t;

def r = opDef <$> apat <*> varSym <*> apat <*> guards "=" r
  <|> liftA2 (,) var (liftA2 onePat (many apat) (guards "=" r));

patVars = \case
  { PatLit _ -> []
  ; PatVar s m -> s : maybe [] patVars m
  ; PatCon _ args -> concat $ patVars <$> args
  };

fvPro bound expr = case expr of
  { V s | not (elem s bound) -> [s]
  ; A x y -> fvPro bound x `union` fvPro bound y
  ; L s t -> fvPro (s:bound) t
  ; Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  ; _ -> []
  };

overFreePro s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFreePro s f x) (overFreePro s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
  ; Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts
  };

nonemptyTails [] = [];
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt;

addLets ls x = let
  { vs = fst <$> ls
  ; ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  ; components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  ; triangle names expr = let
    { tnames = nonemptyTails names
    ; suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
    ; insLams vs t = foldr L t vs
    } in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames
  } in foldr triangle x components;

letin r = addLets <$> between (tok "let") (tok "in") (coalesce <$> braceSep (def r)) <*> r;
ifthenelse r = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (tok "if" *> r) <*> (tok "then" *> r) <*> (tok "else" *> r);
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]");
anyChar = sat \_ -> True;
rawBody = (char '|' *> char ']' *> pure []) <|> (:) <$> anyChar <*> rawBody;
rawQQ = spc $ char '[' *> char 'r' *> char '|' *> (E . StrCon <$> rawBody);
atom r = ifthenelse r <|> letin r <|> rawQQ <|>  listify <$> sqLst r <|> section r <|> cas r <|> lam r <|> (paren (spch ',') *> pure (V ",")) <|> fmap V (con <|> var) <|> lit;
aexp r = fmap (foldl1 A) (some (atom r));
fix f = f (fix f);

data Assoc = NAssoc | LAssoc | RAssoc;
instance Eq Assoc where
{ NAssoc == NAssoc = True
; LAssoc == LAssoc = True
; RAssoc == RAssoc = True
; _ == _ = False
};
precOf s precTab = fmaybe (lookup s precTab) 9 fst;
assocOf s precTab = fmaybe (lookup s precTab) LAssoc snd;
opWithPrec precTab n = wantWith (\s -> n == precOf s precTab) op;
opFold precTab e xs = case xs of
  { [] -> e
  ; x:xt -> case find (\y -> assocOf (fst x) precTab /= assocOf (fst y) precTab) xt of
    { Nothing -> case assocOf (fst x) precTab of
      { NAssoc -> case xt of
        { [] -> fpair x (\op y -> A (A (V op) e) y)
        ; y:yt -> undefined
        }
      ; LAssoc -> foldl (\a (op, y) -> A (A (V op) a) y) e xs
      ; RAssoc -> foldr (\(op, y) b -> \e -> A (A (V op) e) (b y)) id xs $ e
      }
    ; Just y -> undefined
    }
  };
expr precTab = fix \r n -> if n <= 9
  then liftA2 (opFold precTab) (r $ succ n) (many (liftA2 (,) (opWithPrec precTab n) (r $ succ n)))
  else aexp (r 0);

bType r = foldl1 TAp <$> some r;
_type r = foldr1 arr <$> sepBy (bType r) (spc (tok "->"));
typeConst = (\s -> if s == "String" then TAp (TC "[]") (TC "Char") else TC s) <$> conId;
aType = spch '(' *> (spch ')' *> pure (TC "()") <|> ((&) <$> _type aType <*> ((spch ',' *> ((\a b -> TAp (TAp (TC ",") b) a) <$> _type aType)) <|> pure id)) <* spch ')') <|>
  typeConst <|> (TV <$> varId) <|>
  (spch '[' *> (spch ']' *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type aType <* spch ']')));

simpleType c vs = foldl TAp (TC c) (map TV vs);

constr = (\x c y -> Constr c [x, y]) <$> aType <*> conSym <*> aType
  <|> Constr <$> conId <*> many aType;

adt = addAdt <$> between (tok "data") (spch '=') (simpleType <$> conId <*> many varId) <*> sepBy constr (spch '|');

prec = (\c -> ord c - ord '0') <$> spc digit;
fixityList a n os = map (\o -> (o, (n, a))) os;
fixityDecl kw a = between (tok kw) (spch ';') (fixityList a <$> prec <*> sepBy op (spch ','));
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;

genDecl = (,) <$> var <*> (char ':' *> spch ':' *> _type aType);
classDecl = tok "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (tok "where" *> braceSep genDecl));

inst = _type aType;
instDecl r = tok "instance" *>
  ((\ps cl ty defs -> addInst cl (Qual ps ty) defs) <$>
  (((wrap .) . Pred <$> conId <*> (inst <* tok "=>")) <|> pure [])
    <*> conId <*> inst <*> (tok "where" *> (coalesce <$> braceSep (def r))));

tops precTab = sepBy
  (   adt
  <|> classDecl
  <|> instDecl (expr precTab 0)
  <|> tok "foreign" *>
    ( tok "import" *> var *> (addFFI <$> litStr <*> var <*> (char ':' *> spch ':' *> _type aType))
    <|> tok "export" *> var *> (addExport <$> litStr <*> var)
    )
  <|> addDefs . coalesce <$> sepBy1 (def $ expr precTab 0) (spch ';')
  ) (spch ';') <* (spch ';' <|> pure ';');
program = parse $ sp *> (((":", (5, RAssoc)):) . concat <$> many fixity) >>= tops;

-- Primitives.

primAdts =
  [ addAdt (TC "Bool") [Constr "True" [], Constr "False" []]
  , addAdt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
  , addAdt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]];

prims = let
  { ii = arr (TC "Int") (TC "Int")
  ; iii = arr (TC "Int") ii
  ; bin s = A (ro 'Q') (ro s) } in map (second (first noQual)) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin '='))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin 'L'))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin '='))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin 'L'))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro 'I'))
    , ("()", (TC "()", ro 'K'))
    , ("chr", (arr (TC "Int") (TC "Char"), ro 'I'))
    , ("ord", (arr (TC "Char") (TC "Int"), ro 'I'))
    , ("succ", (ii, A (ro 'T') (A (E $ Const $ 1) (ro '+'))))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro 'C'))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro 'V'))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro '.'))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro 'C') (A (ro 'T') (ro '?'))) (ro 'K')))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ] ++ map (\s -> (wrap s, (iii, bin s))) "+-*/%";

-- Conversion to De Bruijn indices.

data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC;

debruijn n e = case e of
  { E x -> Pass $ Lf x
  ; V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  ; A x y -> App (debruijn n x) (debruijn n y)
  ; L s t -> La (debruijn (s:n) t)
  };

-- Kiselyov bracket abstraction.

data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree;
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem;

lf = Lf . Basic;

ldef = \r y -> case y of
  { Defer -> Need (Closed (Nd (Nd (lf 'S') (lf 'I')) (lf 'I')))
  ; Closed d -> Need (Closed (Nd (lf 'T') d))
  ; Need e -> Need (r (Closed (Nd (lf 'S') (lf 'I'))) e)
  ; Weak e -> Need (r (Closed (lf 'T')) e)
  };

lclo = \r d y -> case y of
  { Defer -> Need (Closed d)
  ; Closed dd -> Closed (Nd d dd)
  ; Need e -> Need (r (Closed (Nd (lf 'B') d)) e)
  ; Weak e -> Weak (r (Closed d) e)
  };

lnee = \r e y -> case y of
  { Defer -> Need (r (r (Closed (lf 'S')) e) (Closed (lf 'I')))
  ; Closed d -> Need (r (Closed (Nd (lf 'R') d)) e)
  ; Need ee -> Need (r (r (Closed (lf 'S')) e) ee)
  ; Weak ee -> Need (r (r (Closed (lf 'C')) e) ee)
  };

lwea = \r e y -> case y of
  { Defer -> Need e
  ; Closed d -> Weak (r e (Closed d))
  ; Need ee -> Need (r (r (Closed (lf 'B')) e) ee)
  ; Weak ee -> Weak (r e ee)
  };

babsa x y = case x of
  { Defer -> ldef babsa y
  ; Closed d -> lclo babsa d y
  ; Need e -> lnee babsa e y
  ; Weak e -> lwea babsa e y
  };

babs t = case t of
  { Ze -> Defer
  ; Su x -> Weak (babs x)
  ; Pass x -> Closed x
  ; La t -> case babs t of
    { Defer -> Closed (lf 'I')
    ; Closed d -> Closed (Nd (lf 'K') d)
    ; Need e -> e
    ; Weak e -> babsa (Closed (lf 'K')) e
    }
  ; App x y -> babsa (babs x) (babs y)
  };

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x;

isLeaf t c = case t of { Lf (Basic n) -> n == c ; _ -> False };

optim t = case t of
  { Nd x y -> let { p = optim x ; q = optim y } in
    if isLeaf p 'I' then q else
    if isLeaf q 'I' then case p of
      { Lf (Basic c)
        | c == 'C' -> lf 'T'
        | c == 'B' -> lf 'I'
      ; Nd p1 p2 -> case p1 of
        { Lf (Basic c)
          | c == 'B' -> p2
          | c == 'R' -> Nd (lf 'T') p2
        ; _ -> Nd (Nd p1 p2) q
        }
      ; _ -> Nd p q
      } else
    if isLeaf q 'T' then case p of
      { Nd (Lf (Basic 'B')) (Lf (Basic 'C')) -> lf 'V'
      ; _ -> Nd p q
      } else Nd p q
  ; _ -> t
  };

freeCount v expr = case expr of
  { E _ -> 0
  ; V s -> if s == v then 1 else 0
  ; A x y -> freeCount v x + freeCount v y
  ; L w t -> if v == w then 0 else freeCount v t
  };

app01 s x = let { n = freeCount s x } in
  if 2 <= n then A $ L s x else
    if 0 == n then const x else flip (beta s) x;
optiApp t = case t of
  { A (L s x) y -> app01 s (optiApp x) (optiApp y)
  ; A x y -> A (optiApp x) (optiApp y)
  ; L s x -> L s (optiApp x)
  ; _ -> t
  };

enc tab mem t = case t of
  { Lf d -> case d of
    { Basic c -> (ord c, mem)
    ; Const c -> fpair mem \hp bs -> (hp, (hp + 2, bs . (ord '#':) . (c:)))
    ; ChrCon c -> fpair mem \hp bs -> (hp, (hp + 2, bs . (ord '#':) . (ord c:)))
    ; StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf ':') (Nd (lf '#') (lf h))) t) (lf 'K') s
    }
  ; LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  ; Nd x y -> fpair mem \hp bs -> let
    { pm qm = enc tab (hp + 2, bs . (fst (pm qm):) . (fst qm:)) x
    ; qm = enc tab (snd $ pm qm) y
    } in (hp, snd qm)
  };

asm combs = let
  { tabmem = foldl (\(as, m) (s, t) -> let { pm' = enc (fst tabmem) m t } in
    (insert s (fst pm') as, snd pm')) (Tip, (128, id)) combs } in tabmem;

-- Type checking.

apply sub t = case t of
  { TC v -> t
  ; TV v -> maybe t id $ lookup v sub
  ; TAp a b -> TAp (apply sub a) (apply sub b)
  };

(@@) s1 s2 = map (second (apply s1)) s2 ++ s1;

occurs s t = case t of
  { TC v -> False
  ; TV v -> s == v
  ; TAp a b -> occurs s a || occurs s b
  };

varBind s t = case t of
  { TC v -> Right [(s, t)]
  ; TV v -> Right $ if v == s then [] else [(s, t)]
  ; TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]
  };

mgu unify t u = case t of
  { TC a -> case u of
    { TC b -> if a == b then Right [] else Left "TC-TC clash"
    ; TV b -> varBind b t
    ; TAp a b -> Left "TC-TAp clash"
    }
  ; TV a -> varBind a u
  ; TAp a b -> case u of
    { TC b -> Left "TAp-TC clash"
    ; TV b -> varBind b t
    ; TAp c d -> mgu unify a c >>= unify b d
    }
  };

unify a b s = (@@ s) <$> mgu unify (apply s a) (apply s b);

--instantiate' :: Type -> Int -> [(String, Type)] -> ((Type, Int), [(String, Type)])
instantiate' t n tab = case t of
  { TC s -> ((t, n), tab)
  ; TV s -> case lookup s tab of
    { Nothing -> let { va = TV (showInt n "") } in ((va, n + 1), (s, va):tab)
    ; Just v -> ((v, n), tab)
    }
  ; TAp x y ->
    fpair (instantiate' x n tab) \(t1, n1) tab1 ->
    fpair (instantiate' y n1 tab1) \(t2, n2) tab2 ->
    ((TAp t1 t2, n2), tab2)
  };

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab);

--instantiate :: Qual -> Int -> (Qual, Int)
instantiate (Qual ps t) n =
  fpair (foldr instantiatePred (([], n), []) ps) \(ps1, n1) tab ->
  first (Qual ps1) (fst (instantiate' t n1 tab));

proofApply sub a = case a of
  { Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  ; A x y -> A (proofApply sub x) (proofApply sub y)
  ; L s t -> L s $ proofApply sub t
  ; _ -> a
  };

typeAstSub sub (t, a) = (apply sub t, proofApply sub a);

infer typed loc ast csn = fpair csn \cs n ->
  let
    { va = TV (showInt n "")
    ; insta ty = fpair (instantiate ty n) \(Qual preds ty) n1 -> ((ty, foldl A ast (map Proof preds)), (cs, n1))
    }
  in case ast of
  { E x -> Right $ case x of
    { Basic 'Y' -> insta $ noQual $ arr (arr (TV "a") (TV "a")) (TV "a")
    ; Const _ -> ((TC "Int", ast), csn)
    ; ChrCon _ -> ((TC "Char", ast), csn)
    ; StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    }
  ; V s -> fmaybe (lookup s loc)
    (fmaybe (mlookup s typed) (error $ "depGraph bug! " ++ s) $ Right . insta)
    \t -> Right ((t, ast), csn)
  ; A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  ; L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  };

instance Eq Type where
  { (TC s) == (TC t) = s == t
  ; (TV s) == (TV t) = s == t
  ; (TAp a b) == (TAp c d) = a == c && b == d
  ; _ == _ = False
  };

instance Eq Pred where { (Pred s a) == (Pred t b) = s == t && a == b };

merge s1 s2 = if all (\v -> apply s1 (TV v) == apply s2 (TV v))
  $ map fst s1 `intersect` map fst s2 then Just $ s1 ++ s2 else Nothing;

match h t = case h of
  { TC a -> case t of
    { TC b | a == b -> Just []
    ; _ -> Nothing
    }
  ; TV a -> Just [(a, t)]
  ; TAp a b -> case t of
    { TAp c d -> case match a c of
      { Nothing -> Nothing
      ; Just ac -> case match b d of
        { Nothing -> Nothing
        ; Just bd -> merge ac bd
        }
      }
    ; _ -> Nothing
    }
  };

par f = ('(':) . f . (')':);
showType t = case t of
  { TC s -> (s++)
  ; TV s -> (s++)
  ; TAp (TAp (TC "->") a) b -> par $ showType a . (" -> "++) . showType b
  ; TAp a b -> par $ showType a . (' ':) . showType b
  };
showPred (Pred s t) = (s++) . (' ':) . showType t . (" => "++);
dictVarize s t = '{':s ++ (' ':showType t "") ++ "}";

findInst r qn p@(Pred cl ty) insts = case insts of
  { [] -> fpair qn \q n -> let { v = '*':showInt n "" } in Right (((p, v):q, n + 1), V v)
  ; (Qual ps h):is -> case match h ty of
    { Nothing -> findInst r qn p is
    ; Just u -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> r (Pred cl1 $ apply u ty1) qn1) (qn, V $ dictVarize cl h) ps
  }};

findProof ienv pred psn@(ps, n) = case lookup pred ps of
  { Nothing -> case pred of { Pred s t -> case mlookup s ienv of
    { Nothing -> Left $ "no instances: " ++ s
    ; Just insts -> findInst (findProof ienv) psn pred insts
    }}
  ; Just s -> Right (psn, V s)
  };

prove' ienv psn a = case a of
  { Proof pred -> findProof ienv pred psn
  ; A x y -> prove' ienv psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove' ienv psn1 y
  ; L s t -> second (L s) <$> prove' ienv psn t
  ; _ -> Right (psn, a)
  };

dictVars ps n = flst ps ([], n) \p pt -> first ((p, '*':showInt n ""):) (dictVars pt $ n + 1);

-- The 4th argument: e.g. Qual [Eq a] "[a]" for Eq a => Eq [a].
inferMethod ienv dcs typed (Qual psi ti) (s, expr) =
  infer typed [] expr ([], 0) >>=
  \(ta, (sub, n)) -> fpair (typeAstSub sub ta) \tx ax -> case mlookup s typed of
    { Nothing -> Left $ "no such method: " ++ s
    -- e.g. qc = Eq a => a -> a -> Bool
    -- We instantiate: Eq a1 => a1 -> a1 -> Bool.
    ; Just qc -> fpair (instantiate qc n) \(Qual [Pred _ headT] tc) n1 ->
      -- We mix the predicates `psi` with the type of `headT`, applying a
      -- substitution such as (a1, [a]) so the variable names match.
      -- e.g. Eq a => [a] -> [a] -> Bool
      -- Then instantiate and match.
      case match headT ti of { Just subc ->
        fpair (instantiate (Qual psi $ apply subc tc) n1) \(Qual ps2 t2) n2 ->
          case match tx t2 of
            { Nothing -> Left "class/instance type conflict"
            ; Just subx -> snd <$> prove' ienv (dictVars ps2 0) (proofApply subx ax)
          }}};

inferInst ienv dcs typed (cl, (q@(Qual ps t), ds)) = let { dvs = map snd $ fst $ dictVars ps 0 } in
  (dictVarize cl t,) . flip (foldr L) dvs
  . L "@" . foldl A (V "@") <$> mapM (inferMethod ienv dcs typed q) ds;

-- Pattern compiler.
rewritePats rewriteCase dcs = \case
  { [] -> pure $ V "join#"
  ; vsxs@((as0, _):_) -> case as0 of
    { [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    ; _ -> let { k = length as0 } in get >>= \n -> put (n + k)
      >> let { vs = take k $ (`showInt` "#") <$> upFrom n } in case vs of
        { vh:vt -> (flip mapM vsxs \asx -> fpair asx \as x -> case as of
          { a:at -> (a,) <$> foldM (\b pv -> fpair pv \p v ->
            rewriteCase dcs v Tip [(p, b)]) x (zip at vt) })
          >>= \cs -> flip (foldr L) vs <$> rewriteCase dcs vh Tip cs
        }
    }
  };

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y;

rewriteCase dcs caseVar tab expr = let
  { rec = rewriteCase dcs caseVar
  ; flush onFail = case toAscList tab of
    { [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    ; (firstC, _):_ -> let { cs = maybe undefined id $ mlookup firstC dcs } in
      mapM (\(Constr s ts) -> case mlookup s tab of
        { Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
        ; Just f -> rewritePats rewriteCase dcs $ f []
        }) cs >>= \jumpTable ->
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail
    }
  ; go v x rest = case v of
    { PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    ; PatVar s m -> let { x' = beta s (V caseVar) x } in case m of
      { Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      ; Just v' -> go v' x' rest
      }
    ; PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
    }
  } in case expr of
  { [] -> flush $ V "join#"
  ; ((v, x):rest) -> go v x rest
  };

secondM f (a, b) = (a,) <$> f b;
patternCompile dcs = let
  { go t = case t of
    { E _ -> pure t
    ; V _ -> pure t
    ; A x y -> liftA2 A (go x) (go y)
    ; L s x -> L s <$> go x
    ; Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats rewriteCase dcs
    }
  } in \case
  { Left (s, t) -> Left (s, optiApp $ evalState (go t) 0)
  ; Right (cl, (q, ds)) -> Right (cl, (q, second (\t -> optiApp $ evalState (go t) 0) <$> ds))
  };

fv bound = \case
  { V s | not (elem s bound) -> [s]
  ; A x y -> fv bound x `union` fv bound y
  ; L s t -> fv (s:bound) t
  ; _ -> []
  };

depGraph typed (s, ast) (vs, es) = (insert s ast vs,
  foldr (\k ios@(ins, outs) -> case lookup k typed of
    { Nothing -> (insertWith union k [s] ins, insertWith union s [k] outs)
    ; Just _ -> ios
    }) es $ fv [] ast);

inferno prove typed defmap syms = let
  { loc = zip syms $ TV . (' ':) <$> syms
  } in foldM (\(acc, (subs, n)) s ->
      maybe (Left $ "missing: " ++ s) Right (mlookup s defmap) >>=
      \expr -> infer typed loc expr (subs, n) >>=
      \((t, a), (ms, n1)) -> unify (TV (' ':s)) t ms >>=
      \cs -> Right ((s, (t, a)):acc, (cs, n1))
    ) ([], ([], 0)) syms >>=
    \(stas, (soln, _)) -> mapM id $ (\(s, ta) -> prove s $ typeAstSub soln ta) <$> stas;

prove ienv s (t, a) = flip fmap (prove' ienv ([], 0) a) \((ps, _), x) ->
  let { applyDicts expr = foldl A expr $ map (V . snd) ps }
  in (s, (Qual (map fst ps) t, foldr L (overFree s applyDicts x) $ map snd ps));
inferDefs' ienv defmap (typeTab, lambF) syms = let
  { add stas = foldr (\(s, (q, cs)) (tt, f) -> (insert s q tt, f . ((s, cs):))) (typeTab, lambF) stas
  } in add <$> inferno (prove ienv) typeTab defmap syms
  ;
inferDefs ienv defs dcs typed = let
  { typeTab = foldr (\(k, (q, _)) -> insert k q) Tip typed
  ; lambs = second snd <$> typed
  ; plains = patternCompile dcs <$> defs
  ; lrs = foldr (either (\def -> (first (def:) .)) (\i -> (second (i:) .))) id plains ([], [])
  ; defmapgraph = foldr (depGraph typed) (Tip, (Tip, Tip)) $ fst lrs
  ; defmap = fst defmapgraph
  ; graph = snd defmapgraph
  ; ins k = maybe [] id $ mlookup k $ fst graph
  ; outs k = maybe [] id $ mlookup k $ snd graph
  ; mainLambs = foldM (inferDefs' ienv defmap) (typeTab, (lambs++)) $ scc ins outs $ map fst $ toAscList defmap
  } in case mainLambs of
  { Left err -> Left err
  ; Right (tt, lambF) -> (\instLambs -> (tt, lambF . (instLambs++))) <$> mapM (inferInst ienv dcs tt) (snd lrs)
  };

last' x xt = flst xt x \y yt -> last' y yt;
last xs = flst xs undefined last';
init (x:xt) = flst xt [] \_ _ -> x : init xt;
intercalate sep xs = flst xs [] \x xt -> x ++ concatMap (sep ++) xt;

argList t = case t of
  { TC s -> [TC s]
  ; TV s -> [TV s]
  ; TAp (TC "IO") (TC u) -> [TC u]
  ; TAp (TAp (TC "->") x) y -> x : argList y
  };

cTypeName (TC "()") = "void";
cTypeName (TC "Int") = "int";
cTypeName (TC "Char") = "int";

ffiDeclare (name, t) = let { tys = argList t } in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"];

ffiArgs n t = case t of
  { TC s -> ("", ((True, s), n))
  ; TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  ; TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ showInt n ")") ++) $ ffiArgs (n + 1) y
  };

ffiDefine n ffis = case ffis of
  { [] -> id
  ; (name, t):xt -> fpair (ffiArgs 2 t) \args ((isPure, ret), count) -> let
    { lazyn = ("lazy(" ++) . showInt (if isPure then count - 1 else count + 1) . (", " ++)
    ; cont tgt = if isPure then ("'I', "++) . tgt else ("app(arg("++) . showInt (count + 1) . ("), "++) . tgt . ("), arg("++) . showInt count . (")"++)
    ; longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    } in ("case " ++) . showInt n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("'K'"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app('#', r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt
  };

getContents = getChar >>= \n -> if n <= 255 then (chr n:) <$> getContents else pure [];

untangle s = fmaybe (program s) (Left "parse error") \(prog, rest) -> case rest of
  { "" -> fneat (foldr ($) (Neat Tip [] prims Tip [] []) $ primAdts ++ prog) \ienv fs typed dcs ffis exs ->
    case inferDefs ienv fs dcs typed of
      { Left err -> Left err
      ; Right qas -> Right (qas, (ffis, exs))
      }
  ; s -> Left $ "dregs: " ++ s
  };

optiComb' (subs, combs) (s, lamb) = let
  { gosub t = case t of
    { LfVar v -> maybe t id $ lookup v subs
    ; Nd a b -> Nd (gosub a) (gosub b)
    ; _ -> t
    }
  ; c = optim $ gosub $ nolam $ optiApp lamb
  ; combs' = combs . ((s, c):)
  } in case c of
  { Lf (Basic b) -> ((s, c):subs, combs')
  ; LfVar v -> if v == s then (subs, combs . ((s, Nd (lf 'Y') (lf 'I')):)) else ((s, gosub c):subs, combs')
  ; _ -> (subs, combs')
  };
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs;

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_init();rts_reduce(" ++ showInt n ");return 0;}\n";

compile s = case untangle s of
  { Left err -> err
  ; Right ((_, lambF), (ffis, exs)) -> fpair (asm $ optiComb $ lambF []) \tab mem ->
    (concatMap ffiDeclare ffis ++) .
    ("static void foreign(u n) {\n  switch(n) {\n" ++) .
    ffiDefine (length ffis - 1) ffis .
    ("\n  }\n}\n" ++) .
    ("static const u prog[]={" ++) .
    foldr (.) id (map (\n -> showInt n . (',':)) $ snd mem []) .
    ("};\nstatic const u prog_size=sizeof(prog)/sizeof(*prog);\n" ++) .
    ("static u root[]={" ++) .
    foldr (\(x, y) f -> maybe undefined showInt (mlookup y tab) . (", " ++) . f) id exs .
    ("};\n" ++) .
    ("static const u root_size=" ++) . showInt (length exs) . (";\n" ++) .
    (foldr (.) id $ zipWith (\p n -> (("EXPORT(f" ++ showInt n ", \"" ++ fst p ++ "\", " ++ showInt n ")\n") ++)) exs (upFrom 0)) $
    maybe "" genMain (mlookup "main" tab)
  };

showTree prec t = case t of
  { LfVar s@(h:_) -> (if elem h ":!#$%&*+./<=>?@\\^|-~" then par else id) (s++)
  ; Lf n -> case n of
    { Basic i -> (i:)
    ; Const i -> showInt i
    ; ChrCon c -> ('\'':) . (c:) . ('\'':)
    ; StrCon s -> ('"':) . (s++) . ('"':)
    }
  ; Nd (Lf (Basic 'F')) (Lf (Basic c)) -> ("FFI_"++) . showInt (ord c)
  ; Nd x y -> (if prec then par else id) (showTree False x . (' ':) . showTree True y)
  };
disasm (s, t) = (s++) . (" = "++) . showTree False t . (";\n"++);

dumpCombs s = case untangle s of
  { Left err -> err
  ; Right ((_, lambF), _) -> foldr ($) [] $ map disasm $ optiComb $ lambF []
  };

showQual (Qual ps t) = foldr (.) id (map showPred ps) . showType t;

dumpTypes s = case untangle s of
  { Left err -> err
  ; Right ((typed, _), _) -> ($ "") $ foldr (.) id $
    map (\(s, q) -> (s++) . (" :: "++) . showQual q . ('\n':)) $ toAscList typed
  };

getArg' k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> getArg' (k + 1) n;
getArgs = getArgCount >>= \n -> mapM (getArg' 0) (take (n - 1) $ upFrom 1);

interact f = getContents >>= putStr . f;
main = getArgs >>= \case
  { "comb":_ -> interact dumpCombs
  ; "type":_ -> interact dumpTypes
  ; _ -> interact compile
  };

We ignore the following subtle bug for now. Consider definitions whose right-hand side is a lone variable. Our optiComb function follows lone variables so that:

f = g
g = h
h = f
x = (f, g, h)
y = x
z = y
w = (x, y, z)

compiles to:

f = g
h = g
g = Y I
x = (g, g, g)
y = x
z = x
w = (x, x, x)

That is, afterwards, a variable with a lone variable definition only appears on the right-hand side if its definition has been rewritten to fix id, so is no longer a lone variable. Our asm function relies on this, because it skips anything whose right-hand side is a lone variable.

This causes a corner case to fail: our compiler crashes on attempting to export a symbol whose right-hand side remains a lone variable after optiComb.

Virtually

Concatenating the runtime system with the compiler output is tiresome. Our next compiler also generates the source for the virtual machine.

We change Int from unsigned to signed. We rename (/) and (%) to match Haskell’s div and mod, though they really should be quot and rem; we’ll fix this later.

We add support for newIORef, readIOref, and writeIORef. An IORef holding a value x of type a is represented as REF x where REF behaves like NUM:

REF x f --> f (REF x)

Thus an IORef takes one app-cell in our VM, which adds a layer of indirection. The address of this app-cell may be freely copied, and writeIORef can update all these copies at once, by changing a single entry. We hardwire the following:

newIORef = NEWREF
readIORef ref world cont = ref READREF world cont
writeIORef ref value world cont = ref (WRITEREF value) world cont
NEWREF value world cont = cont (REF value) world
READREF (REF x) world cont = cont x world
WRITEREF value (REF _) world cont = cont () world

NEWREF has a subtle side effect: it ensures the REF value cell it creates is new. Originally, we defined newIORef value world cont = cont (REF value) world but this is unsafe because the REF value might be shared, causing writes to stomp over each other.

WRITEREF also has a side effect: it overwrites the given app-cell with REF value before returning cont. It is the only combinator that can modify the values in the heap, excluding changes caused by lazy updates and garbage collection.

We clean up top-level definitions as mutual recursion is now possible.

The leftyPat function supports patterns on the left-hand side of definitions, for example:

[a,b,c] = expr

Our solution is simplistic. We find all pattern variables, such as a,b,c. If nonempty, we prepend @ to the first variable, for example @a, to generate a symbol unique to the current scope (a cheap trick to approximate Lisp’s gensym). Then we define this generated symbol to be the expression on the right-hand side, for example @a = expr, and then we generate case expressions for each pattern variable to define them, for example

@a = expr
a = case @a of [a,b,c] -> a
b = case @a of [a,b,c] -> b
c = case @a of [a,b,c] -> c

Our scheme fails to handle the wild-card pattern _ correctly, which we’ll fix in a later compiler. Until then, we tread carefully with patterns on the left.

-- Bundle VM code with output.
infixr 9 .;
infixl 7 * , / , %;
infixl 6 + , -;
infixr 5 ++;
infixl 4 <*> , <$> , <* , *>;
infix 4 == , /= , <=;
infixl 3 && , <|>;
infixl 2 ||;
infixl 1 >> , >>=;
infixr 0 $;

foreign import ccall "putchar" putChar :: Int -> IO Int;
foreign import ccall "getchar" getChar :: IO Int;
foreign import ccall "getargcount" getArgCount :: IO Int;
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char;

class Functor f where { fmap :: (a -> b) -> f a -> f b };
class Applicative f where
{ pure :: a -> f a
; (<*>) :: f (a -> b) -> f a -> f b
};
class Monad m where
{ return :: a -> m a
; (>>=) :: m a -> (a -> m b) -> m b
};
(<$>) = fmap;
liftA2 f x y = f <$> x <*> y;
(>>) f g = f >>= \_ -> g;
class Eq a where { (==) :: a -> a -> Bool };
instance Eq Int where { (==) = intEq };
instance Eq Char where { (==) = charEq };
($) f x = f x;
id x = x;
const x y = x;
flip f x y = f y x;
(&) x f = f x;
class Ord a where { (<=) :: a -> a -> Bool };
instance Ord Int where { (<=) = intLE };
instance Ord Char where { (<=) = charLE };
data Ordering = LT | GT | EQ;
compare x y = if x <= y then if y <= x then EQ else LT else GT;
instance Ord a => Ord [a] where {
  (<=) xs ys = case xs of
    { [] -> True
    ; x:xt -> case ys of
      { [] -> False
      ; y:yt -> case compare x y of
        { LT -> True
        ; GT -> False
        ; EQ -> xt <= yt
        }
      }
    }
};
data Maybe a = Nothing | Just a;
data Either a b = Left a | Right b;
fpair (x, y) f = f x y;
fst (x, y) = x;
snd (x, y) = y;
uncurry f (x, y) = f x y;
first f (x, y) = (f x, y);
second f (x, y) = (x, f y);
not a = if a then False else True;
x /= y = not $ x == y;
(.) f g x = f (g x);
(||) f g = if f then True else g;
(&&) f g = if f then g else False;
flst xs n c = case xs of { [] -> n; h:t -> c h t };
instance Eq a => Eq [a] where { (==) xs ys = case xs of
  { [] -> case ys of
    { [] -> True
    ; _ -> False
    }
  ; x:xt -> case ys of
    { [] -> False
    ; y:yt -> x == y && xt == yt
    }
  }};
take n xs = if n == 0 then [] else flst xs [] \h t -> h:take (n - 1) t;
maybe n j m = case m of { Nothing -> n; Just x -> j x };
fmaybe m n j = case m of { Nothing -> n; Just x -> j x };
instance Functor Maybe where { fmap f = maybe Nothing (Just . f) };
instance Applicative Maybe where { pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf };
instance Monad Maybe where { return = Just ; mf >>= mg = maybe Nothing mg mf };
foldr c n l = flst l n (\h t -> c h(foldr c n t));
length = foldr (\_ n -> n + 1) 0;
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure []);
mapM_ f = foldr ((>>) . f) (pure ());
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0;
instance Applicative IO where { pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y) };
instance Monad IO where { return = ioPure ; (>>=) = ioBind };
instance Functor IO where { fmap f x = ioPure f <*> x };
putStr = mapM_ $ putChar . ord;
error s = unsafePerformIO $ putStr s >> putChar (ord '\n') >> exitSuccess;
undefined = error "undefined";
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l;
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a;
foldl1 f (h:t) = foldl f h t;
elem k xs = foldr (\x t -> x == k || t) False xs;
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
wrap c = c:[];
map = flip (foldr . ((:) .)) [];
instance Functor [] where { fmap = map };
concatMap = (concat .) . map;
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing;
all f = foldr (&&) True . map f;
any f = foldr (||) False . map f;
upFrom n = n : upFrom (n + 1);
zipWith f xs ys = flst xs [] $ \x xt -> flst ys [] $ \y yt -> f x y : zipWith f xt yt;
zip = zipWith (,);
data State s a = State (s -> (a, s));
runState (State f) = f;
instance Functor (State s) where { fmap f = \(State h) -> State (first f . h) };
instance Applicative (State s) where
{ pure a = State (a,)
; (State f) <*> (State x) = State \s -> fpair (f s) \g s' -> first g $ x s'
};
instance Monad (State s) where
{ return a = State (a,)
; (State h) >>= f = State $ uncurry (runState . f) . h
};
evalState m s = fst $ runState m s;
get = State \s -> (s, s);
put n = State \s -> ((), n);
either l r e = case e of { Left x -> l x; Right x -> r x };
instance Functor (Either a) where { fmap f e = case e of
  { Left x -> Left x
  ; Right x -> Right $ f x
  }
};
instance Applicative (Either a) where { pure = Right ; ef <*> ex = case ef of
  { Left s -> Left s
  ; Right f -> case ex of
    { Left s -> Left s
    ; Right x -> Right $ f x
    }
  }
};
instance Monad (Either a) where { return = Right ; ex >>= f = case ex of
  { Left s -> Left s
  ; Right x -> f x
  }
};

-- Map.

data Map k a = Tip | Bin Int k a (Map k a) (Map k a);
size m = case m of { Tip -> 0 ; Bin sz _ _ _ _ -> sz };
node k x l r = Bin (1 + size l + size r) k x l r;
singleton k x = Bin 1 k x Tip Tip;
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr;
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr);
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r);
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r);
balance k x l r = (if size l + size r <= 1
  then node
  else if 5 * size l + 3 <= 2 * size r
    then case r of
      { Tip -> node
      ; Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
      }
    else if 5 * size r + 3 <= 2 * size l
      then case l of
        { Tip -> node
        ; Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
          then singleR
          else doubleR
        }
      else node
  ) k x l r;
insert kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sz ky y l r -> case compare kx ky of
    { LT -> balance ky y (insert kx x l) r
    ; GT -> balance ky y l (insert kx x r)
    ; EQ -> Bin sz kx x l r
    }
  };
insertWith f kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sy ky y l r -> case compare kx ky of
    { LT -> balance ky y (insertWith f kx x l) r
    ; GT -> balance ky y l (insertWith f kx x r)
    ; EQ -> Bin sy kx (f x y) l r
    }
  };
mlookup kx t = case t of
  { Tip -> Nothing
  ; Bin _ ky y l r -> case compare kx ky of
    { LT -> mlookup kx l
    ; GT -> mlookup kx r
    ; EQ -> Just y
    }
  };
fromList = foldl (\t (k, x) -> insert k x t) Tip;

foldrWithKey f = let
  { go z t = case t of
    { Tip -> z
    ; Bin _ kx x l r -> go (f kx x (go z r)) l
    }
  } in go;

toAscList = foldrWithKey (\k x xs -> (k,x):xs) [];

-- Parsing.
data Type = TC String | TV String | TAp Type Type;
arr a b = TAp (TAp (TC "->") a) b;
data Extra = Basic String | Const Int | ChrCon Char | StrCon String;
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat];
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred;
data ParseState = ParseState String (Map String (Int, Assoc));
data Parser a = Parser (ParseState -> Maybe (a, ParseState));
data Constr = Constr String [Type];
data Pred = Pred String Type;
data Qual = Qual [Pred] Type;
noQual = Qual [];

data Neat = Neat
  -- | Instance environment.
  (Map String [(String, Qual)])
  -- | Instance definitions.
  [(String, (Qual, [(String, Ast)]))]
  -- | Top-level definitions
  [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]
  ;

getPrecs = Parser \st@(ParseState _ precs) -> Just (precs, st);
putPrecs precs = Parser \(ParseState s _) -> Just ((), ParseState s precs);

ro = E . Basic;
conOf (Constr s _) = s;
specialCase (h:_) = '|':conOf h;
mkCase t cs = (specialCase cs,
  ( noQual $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
  , ro "I"));
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", []);
scottEncode _ ":" _ = ro "CONS";
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs);
scottConstr t cs c = case c of { Constr s ts -> (s,
  ( noQual $ foldr arr t ts
  , scottEncode (map conOf cs) s $ mkStrs ts)) };
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs;

showInt' n = if 0 == n then id else (showInt' $ n/10) . ((:) (chr $ 48+n%10));
showInt n = if 0 == n then ('0':) else showInt' n;

mkFFIHelper n t acc = case t of
  { TC s -> acc
  ; TAp (TC "IO") _ -> acc
  ; TAp (TAp (TC "->") x) y -> L (showInt n "") $ mkFFIHelper (n + 1) y $ A (V $ showInt n "") acc
  };

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs;
addAdt t cs (Neat ienv defs fs typed dcs ffis exs) =
  Neat ienv defs fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis exs;

addClass classId v ms (Neat ienv idefs fs typed dcs ffis exs) = let
  { vars = zipWith (\_ n -> showInt n "") ms $ upFrom 0
  } in Neat ienv idefs fs (zipWith (\var (s, t) ->
    (s, (Qual [Pred classId v] t,
      L "@" $ A (V "@") $ foldr L (V var) vars))) vars ms ++ typed) dcs ffis exs;
dictName cl (Qual _ t) = '{':cl ++ (' ':showType t "") ++ "}";
addInst cl q ds (Neat ienv idefs fs typed dcs ffis exs) = let { name = dictName cl q } in
  Neat (insertWith (++) cl [(name, q)] ienv) ((name, (q, ds)):idefs) fs typed dcs ffis exs;
addFFI foreignname ourname t (Neat ienv idefs fs typed dcs ffis exs) = let
  { fn = A (ro "F") $ E $ Const $ length ffis
  } in Neat ienv idefs fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) exs;
addDefs ds (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs (ds ++ fs) typed dcs ffis exs;
addExport e f (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs fs typed dcs ffis ((e, f):exs);

parse (Parser f) inp = f inp;
instance Functor Parser where { fmap f (Parser x) = Parser $ fmap (first f) . x };
instance Applicative Parser where
{ pure x = Parser \inp -> Just (x, inp)
; x <*> y = Parser \inp -> case parse x inp of
  { Nothing -> Nothing
  ; Just (fun, t) -> case parse y t of
    { Nothing -> Nothing
    ; Just (arg, u) -> Just (fun arg, u)
    }
  }
};
instance Monad Parser where
{ return = pure
; (>>=) x f = Parser \inp -> case parse x inp of
  { Nothing -> Nothing
  ; Just (a, t) -> parse (f a) t
  }
};

x <|> y = Parser \inp -> fmaybe (parse x inp) (parse y inp) Just;
sat f = Parser \(ParseState inp precs) -> flst inp Nothing \h t ->
  if f h then Just (h, ParseState t precs) else Nothing;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];

char c = sat (c ==);
between x y p = x *> (p <* y);
com = char '-' *> between (char '-') (char '\n') (many $ sat ('\n' /=));
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13];
sp = many (wrap <$> sat isSpace <|> com);
spc f = f <* sp;
spch = spc . char;
wantWith pred f = Parser \inp -> case parse f inp of
  { Nothing -> Nothing
  ; Just at -> if pred $ fst at then Just at else Nothing
  };
paren = between (spch '(') (spch ')');
small = sat \x -> ((x <= 'z') && ('a' <= x)) || (x == '_');
large = sat \x -> (x <= 'Z') && ('A' <= x);
hexdigit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
symbo = sat \c -> elem c "!#$%&*+./<=>?@\\^|-~";
varLex = liftA2 (:) small (many (small <|> large <|> digit <|> char '\''));
conId = spc (liftA2 (:) large (many (small <|> large <|> digit <|> char '\'')));
varId = spc $ wantWith (\s -> not $ elem s ["class", "data", "instance", "of", "where", "if", "then", "else"]) varLex;
opTail = many $ char ':' <|> symbo;
conSym = spc $ liftA2 (:) (char ':') opTail;
varSym = spc $ wantWith (not . (`elem` ["@", "=", "|", "->", "=>"])) $ liftA2 (:) symbo opTail;
con = conId <|> paren conSym;
var = varId <|> paren varSym;
op = varSym <|> conSym <|> between (spch '`') (spch '`') (conId <|> varId);
conop = conSym <|> between (spch '`') (spch '`') conId;
escChar = char '\\' *> ((sat \c -> elem c "'\"\\") <|> ((\c -> '\n') <$> char 'n'));
litOne delim = escChar <|> sat (delim /=);
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> spc (some digit);
hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a';
hexadecimal = char '0' *> char 'x' *> (foldl (\n d -> 16*n + hexValue d) 0 <$> spc (some hexdigit));
litInt = Const <$> (decimal <|> hexadecimal);
litChar = ChrCon <$> between (char '\'') (spch '\'') (litOne '\'');
litStr = between (char '"') (spch '"') $ many (litOne '"');
lit = E <$> (StrCon <$> litStr <|> litChar <|> litInt);
sqList r = between (spch '[') (spch ']') $ sepBy r (spch ',');
want f s = wantWith (s ==) f;
tok s = spc $ want (some (char '_' <|> symbo) <|> varLex) s;

gcon = conId <|> paren (conSym <|> (wrap <$> spch ',')) <|> ((:) <$> spch '[' <*> (wrap <$> spch ']'));

apat = PatVar <$> var <*> (tok "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> lit
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" []) <$> sqList pat
  <|> paren ((&) <$> pat <*> ((spch ',' *> ((\y x -> PatCon "," [x, y]) <$> pat)) <|> pure id))
  ;
withPrec precTab n = wantWith (\s -> n == precOf s precTab);
binPat f x y = PatCon f [x, y];
patP n = if n <= 9
  then getPrecs >>= \precTab -> (liftA2 (opFold precTab binPat) (patP $ succ n) $ many $ liftA2 (,) (withPrec precTab n conop) $ patP $ succ n) >>= either (const fail) pure
  else PatCon <$> gcon <*> many apat <|> apat
  ;
pat = patP 0;

maybeWhere p = (&) <$> p <*> (tok "where" *> (addLets . coalesce . concat <$> braceSep def) <|> pure id);

guards s = maybeWhere $ tok s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  { V "True" -> \_ -> y
  ; _ -> A (A (A (V "if") x) y)
  }) <$> (spch '|' *> expr) <*> (tok s *> expr));
braceSep f = between (spch '{') (spch '}') (foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) (spch ';'));
joinIsFail t = A (L "join#" t) (V "fail#");
alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->");
cas = flip A <$> between (tok "case") (tok "of") expr <*> alts;
lamCase = tok "case" *> alts;
lam = spch '\\' *> (lamCase <|> joinIsFail <$> liftA2 onePat (some apat) (tok "->" *> expr));

onePat vs x = Pa [(vs, x)];
opDef x f y rhs = [(f, onePat [x, y] rhs)];
leftyPat p expr = case patVars p of
  { [] -> []
  ; pvars@(h:t) -> let { gen = '@':h } in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  };
def = liftA2 (\l r -> [(l, r)]) var (liftA2 onePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=");
coalesce ds = flst ds [] \h@(s, x) t -> flst t [h] \(s', x') t' -> let
  { f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
  ; f _ _ = error "bad multidef"
  } in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
  ;

flipPairize y x = A (A (V ",") x) y;
thenComma = spch ',' *> ((flipPairize <$> expr) <|> pure (A (V ",")));
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id);
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (wrap <$> spch ','))) <*> expr;
section = spch '(' *> (parenExpr <* spch ')' <|> rightSect <* spch ')' <|> spch ')' *> pure (V "()"));

patVars = \case
  { PatLit _ -> []
  ; PatVar s m -> s : maybe [] patVars m
  ; PatCon _ args -> concat $ patVars <$> args
  };

union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys;
fv bound = \case
  { V s | not (elem s bound) -> [s]
  ; A x y -> fv bound x `union` fv bound y
  ; L s t -> fv (s:bound) t
  ; _ -> []
  };

fvPro bound expr = case expr of
  { V s | not (elem s bound) -> [s]
  ; A x y -> fvPro bound x `union` fvPro bound y
  ; L s t -> fvPro (s:bound) t
  ; Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  ; _ -> []
  };

overFree s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFree s f x) (overFree s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFree s f t'
  };

overFreePro s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFreePro s f x) (overFreePro s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
  ; Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts
  };

beta s t x = overFree s (const t) x;

maybeFix s x = if elem s $ fvPro [] x then A (ro "Y") (L s x) else x;

nonemptyTails [] = [];
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt;

addLets ls x = let
  { vs = fst <$> ls
  ; ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  ; components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  ; triangle names expr = let
    { tnames = nonemptyTails names
    ; suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
    ; insLams vs t = foldr L t vs
    } in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames
  } in foldr triangle x components;

letin = addLets <$> between (tok "let") (tok "in") (coalesce . concat <$> braceSep def) <*> expr;
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (tok "if" *> expr) <*> (tok "then" *> expr) <*> (tok "else" *> expr);
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]");
anyChar = sat \_ -> True;
rawBody = (char '|' *> char ']' *> pure []) <|> (:) <$> anyChar <*> rawBody;
rawQQ = spc $ char '[' *> char 'r' *> char '|' *> (E . StrCon <$> rawBody);
atom = ifthenelse <|> letin <|> rawQQ <|> listify <$> sqList expr <|> section <|> cas <|> lam <|> (paren (spch ',') *> pure (V ",")) <|> fmap V (con <|> var) <|> lit;
aexp = foldl1 A <$> some atom;

data Assoc = NAssoc | LAssoc | RAssoc;
instance Eq Assoc where
{ NAssoc == NAssoc = True
; LAssoc == LAssoc = True
; RAssoc == RAssoc = True
; _ == _ = False
};
precOf s precTab = fmaybe (mlookup s precTab) 9 fst;
assocOf s precTab = fmaybe (mlookup s precTab) LAssoc snd;

opFold precTab f x xs = case xs of
  { [] -> Right x
  ; (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
    { Nothing -> case assocOf op precTab of
      { NAssoc -> case xt of
        { [] -> Right $ f op x y
        ; y:yt -> Left "NAssoc repeat"
        }
      ; LAssoc -> Right $ foldl (\a (op, y) -> f op a y) x xs
      ; RAssoc -> Right $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
      }
    ; Just y -> Left "Assoc clash"
    }
  };
exprP n = if n <= 9
  then getPrecs >>= \precTab -> liftA2 (opFold precTab \op x y -> A (A (V op) x) y) (exprP $ succ n)
    (many (liftA2 (,) (withPrec precTab n op) (exprP $ succ n))) >>= either (const fail) pure
  else aexp;
expr = exprP 0;
fail = Parser $ const Nothing;

bType = foldl1 TAp <$> some aType;
_type = foldr1 arr <$> sepBy bType (spc (tok "->"));
typeConst = (\s -> if s == "String" then TAp (TC "[]") (TC "Char") else TC s) <$> conId;
aType = spch '(' *> (spch ')' *> pure (TC "()") <|> ((&) <$> _type <*> ((spch ',' *> ((\a b -> TAp (TAp (TC ",") b) a) <$> _type)) <|> pure id)) <* spch ')') <|>
  typeConst <|> (TV <$> varId) <|>
  (spch '[' *> (spch ']' *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* spch ']')));

simpleType c vs = foldl TAp (TC c) (map TV vs);

constr = (\x c y -> Constr c [x, y]) <$> aType <*> conSym <*> aType
  <|> Constr <$> conId <*> many aType;

adt = addAdt <$> between (tok "data") (spch '=') (simpleType <$> conId <*> many varId) <*> sepBy constr (spch '|');

fixityList a =
  (\c -> ord c - ord '0') <$> spc digit >>= \n ->
  sepBy op (spch ',') >>= \os ->
  getPrecs >>= \precs -> putPrecs (foldr (\o m -> insert o (n, a) m) precs os) >>
  pure id;
fixityDecl kw a = tok kw *> fixityList a;
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;

genDecl = (,) <$> var <*> (char ':' *> spch ':' *> _type);
classDecl = tok "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (tok "where" *> braceSep genDecl));

inst = _type;
instDecl = tok "instance" *>
  ((\ps cl ty defs -> addInst cl (Qual ps ty) defs) <$>
  (((wrap .) . Pred <$> conId <*> (inst <* tok "=>")) <|> pure [])
    <*> conId <*> inst <*> (tok "where" *> (coalesce . concat <$> braceSep def)));

tops = sepBy
  (   adt
  <|> classDecl
  <|> instDecl
  <|> tok "foreign" *>
    ( tok "import" *> var *> (addFFI <$> litStr <*> var <*> (char ':' *> spch ':' *> _type))
    <|> tok "export" *> var *> (addExport <$> litStr <*> var)
    )
  <|> addDefs <$> def
  <|> fixity
  <|> pure id
  ) (spch ';');
program s = parse (between sp (spch ';' <|> pure ';') tops) $ ParseState s $ insert ":" (5, RAssoc) Tip;

-- Primitives.

primAdts =
  [ addAdt (TC "()") [Constr "()" []]
  , addAdt (TC "Bool") [Constr "True" [], Constr "False" []]
  , addAdt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
  , addAdt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]];

prims = let
  { ii = arr (TC "Int") (TC "Int")
  ; iii = arr (TC "Int") ii
  ; bin s = A (ro "Q") (ro s) } in map (second (first noQual)) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("succ", (ii, A (ro "T") (A (E $ Const $ 1) (ro "ADD"))))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ] ++ map (\(s, v) -> (s, (iii, bin v)))
      [ ("+", "ADD")
      , ("-", "SUB")
      , ("*", "MUL")
      , ("div", "DIV")
      , ("mod", "MOD")
      ];

-- Conversion to De Bruijn indices.

data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC;

debruijn n e = case e of
  { E x -> Pass $ Lf x
  ; V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  ; A x y -> App (debruijn n x) (debruijn n y)
  ; L s t -> La (debruijn (s:n) t)
  };

-- Kiselyov bracket abstraction.

data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree;
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem;

lf = Lf . Basic;

ldef y = case y of
  { Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
  ; Closed d -> Need $ Closed (Nd (lf "T") d)
  ; Need e -> Need $ (Closed (Nd (lf "S") (lf "I"))) ## e
  ; Weak e -> Need $ (Closed (lf "T")) ## e
  };

lclo d y = case y of
  { Defer -> Need $ Closed d
  ; Closed dd -> Closed $ Nd d dd
  ; Need e -> Need $ (Closed (Nd (lf "B") d)) ## e
  ; Weak e -> Weak $ (Closed d) ## e
  };

lnee e y = case y of
  { Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
  ; Closed d -> Need $ Closed (Nd (lf "R") d) ## e
  ; Need ee -> Need $ Closed (lf "S") ## e ## ee
  ; Weak ee -> Need $ Closed (lf "C") ## e ## ee
  };

lwea e y = case y of
  { Defer -> Need e
  ; Closed d -> Weak $ e ## Closed d
  ; Need ee -> Need $ (Closed (lf "B")) ## e ## ee
  ; Weak ee -> Weak $ e ## ee
  };

x ## y = case x of
  { Defer -> ldef y
  ; Closed d -> lclo d y
  ; Need e -> lnee e y
  ; Weak e -> lwea e y
  };

babs t = case t of
  { Ze -> Defer
  ; Su x -> Weak (babs x)
  ; Pass x -> Closed x
  ; La t -> case babs t of
    { Defer -> Closed (lf "I")
    ; Closed d -> Closed (Nd (lf "K") d)
    ; Need e -> e
    ; Weak e -> Closed (lf "K") ## e
    }
  ; App x y -> babs x ## babs y
  };

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x;

optim t = let
  { go (Lf (Basic "I")) q = q
  ; go p q@(Lf (Basic c)) = case c of
    { "I" -> case p of
      { Lf (Basic "C") -> lf "T"
      ; Lf (Basic "B") -> lf "I"
      ; Nd p1 p2 -> case p1 of
        { Lf (Basic "B") -> p2
        ; Lf (Basic "R") -> Nd (lf "T") p2
        ; _ -> Nd (Nd p1 p2) q
        }
      ; _ -> Nd p q
      }
    ; "T" -> case p of
      { Nd (Lf (Basic "B")) (Lf (Basic "C")) -> lf "V"
      ; _ -> Nd p q
      }
    ; _ -> Nd p q
    }
  ; go p q = Nd p q
  } in case t of
  { Nd x y -> go (optim x) (optim y)
  ; _ -> t
  };

freeCount v expr = case expr of
  { E _ -> 0
  ; V s -> if s == v then 1 else 0
  ; A x y -> freeCount v x + freeCount v y
  ; L w t -> if v == w then 0 else freeCount v t
  };

app01 s x = let { n = freeCount s x } in case n of
  { 0 -> const x
  ; 1 -> flip (beta s) x
  ; _ -> A $ L s x
  };
optiApp t = case t of
  { A (L s x) y -> app01 s (optiApp x) (optiApp y)
  ; A x y -> A (optiApp x) (optiApp y)
  ; L s x -> L s (optiApp x)
  ; _ -> t
  };

appCell (hp, bs) x y = (hp, (hp + 2, bs . (x:) . (y:)));

enc tab mem t = case t of
  { Lf n -> case n of
    { Basic c -> (comEnum c, mem)
    ; Const c -> appCell mem (comEnum "NUM") c
    ; ChrCon c -> appCell mem (comEnum "NUM") $ ord c
    ; StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
    }
  ; LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  ; Nd x y -> fpair (enc tab mem x) \xAddr mem'
    -> fpair (enc tab mem' y) \yAddr mem''
    -> appCell mem'' xAddr yAddr
  };

asm combs = let
  { tabmem = foldl (\(as, m) (s, t) -> let { pm' = enc (fst tabmem) m t } in
    (insert s (fst pm') as, snd pm')) (Tip, (128, id)) combs } in tabmem;

-- Type checking.

apply sub t = case t of
  { TC v -> t
  ; TV v -> maybe t id $ lookup v sub
  ; TAp a b -> TAp (apply sub a) (apply sub b)
  };

(@@) s1 s2 = map (second (apply s1)) s2 ++ s1;

occurs s t = case t of
  { TC v -> False
  ; TV v -> s == v
  ; TAp a b -> occurs s a || occurs s b
  };

varBind s t = case t of
  { TC v -> Right [(s, t)]
  ; TV v -> Right $ if v == s then [] else [(s, t)]
  ; TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]
  };

mgu t u = case t of
  { TC a -> case u of
    { TC b -> if a == b then Right [] else Left "TC-TC clash"
    ; TV b -> varBind b t
    ; TAp a b -> Left "TC-TAp clash"
    }
  ; TV a -> varBind a u
  ; TAp a b -> case u of
    { TC b -> Left "TAp-TC clash"
    ; TV b -> varBind b t
    ; TAp c d -> mgu a c >>= unify b d
    }
  };

unify a b s = (@@ s) <$> mgu (apply s a) (apply s b);

instantiate' t n tab = case t of
  { TC s -> ((t, n), tab)
  ; TV s -> case lookup s tab of
    { Nothing -> let { va = TV (showInt n "") } in ((va, n + 1), (s, va):tab)
    ; Just v -> ((v, n), tab)
    }
  ; TAp x y ->
    fpair (instantiate' x n tab) \(t1, n1) tab1 ->
    fpair (instantiate' y n1 tab1) \(t2, n2) tab2 ->
    ((TAp t1 t2, n2), tab2)
  };

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab);

instantiate (Qual ps t) n =
  fpair (foldr instantiatePred (([], n), []) ps) \(ps1, n1) tab ->
  first (Qual ps1) (fst (instantiate' t n1 tab));

proofApply sub a = case a of
  { Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  ; A x y -> A (proofApply sub x) (proofApply sub y)
  ; L s t -> L s $ proofApply sub t
  ; _ -> a
  };

typeAstSub sub (t, a) = (apply sub t, proofApply sub a);

infer typed loc ast csn = fpair csn \cs n ->
  let
    { va = TV (showInt n "")
    ; insta ty = fpair (instantiate ty n) \(Qual preds ty) n1 -> ((ty, foldl A ast (map Proof preds)), (cs, n1))
    }
  in case ast of
  { E x -> Right $ case x of
    { Basic "Y" -> insta $ noQual $ arr (arr (TV "a") (TV "a")) (TV "a")
    ; Const _ -> ((TC "Int", ast), csn)
    ; ChrCon _ -> ((TC "Char", ast), csn)
    ; StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    }
  ; V s -> fmaybe (lookup s loc)
    (fmaybe (mlookup s typed) (error $ "depGraph bug! " ++ s) $ Right . insta)
    \t -> Right ((t, ast), csn)
  ; A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  ; L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  };

instance Eq Type where
  { (TC s) == (TC t) = s == t
  ; (TV s) == (TV t) = s == t
  ; (TAp a b) == (TAp c d) = a == c && b == d
  ; _ == _ = False
  };

instance Eq Pred where { (Pred s a) == (Pred t b) = s == t && a == b };

filter f = foldr (\x xs -> if f x then x:xs else xs) [];
intersect xs ys = filter (\x -> fmaybe (find (x ==) ys) False (\_ -> True)) xs;

merge s1 s2 = if all (\v -> apply s1 (TV v) == apply s2 (TV v))
  $ map fst s1 `intersect` map fst s2 then Just $ s1 ++ s2 else Nothing;

match h t = case h of
  { TC a -> case t of
    { TC b | a == b -> Just []
    ; _ -> Nothing
    }
  ; TV a -> Just [(a, t)]
  ; TAp a b -> case t of
    { TAp c d -> case match a c of
      { Nothing -> Nothing
      ; Just ac -> case match b d of
        { Nothing -> Nothing
        ; Just bd -> merge ac bd
        }
      }
    ; _ -> Nothing
    }
  };

par f = ('(':) . f . (')':);
showType t = case t of
  { TC s -> (s++)
  ; TV s -> (s++)
  ; TAp (TAp (TC "->") a) b -> par $ showType a . (" -> "++) . showType b
  ; TAp a b -> par $ showType a . (' ':) . showType b
  };
showPred (Pred s t) = (s++) . (' ':) . showType t . (" => "++);

findInst ienv qn p@(Pred cl ty) insts = case insts of
  { [] -> fpair qn \q n -> let { v = '*':showInt n "" } in Right (((p, v):q, n + 1), V v)
  ; (name, Qual ps h):is -> case match h ty of
    { Nothing -> findInst ienv qn p is
    ; Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof ienv (Pred cl1 $ apply subs ty1) qn1) (qn, V name) ps
  }};

findProof ienv pred psn@(ps, n) = case lookup pred ps of
  { Nothing -> case pred of { Pred s t -> case mlookup s ienv of
    { Nothing -> Left $ "no instances: " ++ s
    ; Just insts -> findInst ienv psn pred insts
    }}
  ; Just s -> Right (psn, V s)
  };

prove' ienv psn a = case a of
  { Proof pred -> findProof ienv pred psn
  ; A x y -> prove' ienv psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove' ienv psn1 y
  ; L s t -> second (L s) <$> prove' ienv psn t
  ; _ -> Right (psn, a)
  };

dictVars ps n = flst ps ([], n) \p pt -> first ((p, '*':showInt n ""):) (dictVars pt $ n + 1);

-- The 4th argument: e.g. Qual [Eq a] "[a]" for Eq a => Eq [a].
inferMethod ienv dcs typed (Qual psi ti) (s, expr) =
  infer typed [] (patternCompile dcs expr) ([], 0) >>=
  \(ta, (sub, n)) -> fpair (typeAstSub sub ta) \tx ax -> case mlookup s typed of
    { Nothing -> Left $ "no such method: " ++ s
    -- e.g. qc = Eq a => a -> a -> Bool
    -- We instantiate: Eq a1 => a1 -> a1 -> Bool.
    ; Just qc -> fpair (instantiate qc n) \(Qual [Pred _ headT] tc) n1 ->
      -- We mix the predicates `psi` with the type of `headT`, applying a
      -- substitution such as (a1, [a]) so the variable names match.
      -- e.g. Eq a => [a] -> [a] -> Bool
      -- Then instantiate and match.
      case match headT ti of { Just subc ->
        fpair (instantiate (Qual psi $ apply subc tc) n1) \(Qual ps2 t2) n2 ->
          case match tx t2 of
            { Nothing -> Left "class/instance type conflict"
            ; Just subx -> snd <$> prove' ienv (dictVars ps2 0) (proofApply subx ax)
          }}};

inferInst ienv dcs typed (name, (q@(Qual ps t), ds)) = let { dvs = map snd $ fst $ dictVars ps 0 } in
  (name,) . flip (foldr L) dvs . L "@" . foldl A (V "@") <$> mapM (inferMethod ienv dcs typed q) ds;

-- Pattern compiler.
rewritePats dcs = \case
  { [] -> pure $ V "join#"
  ; vsxs@((as0, _):_) -> case as0 of
    { [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    ; _ -> let { k = length as0 } in get >>= \n -> put (n + k)
      >> let { vs = take k $ (`showInt` "#") <$> upFrom n } in case vs of
        { vh:vt -> (flip mapM vsxs \asx -> fpair asx \as x -> case as of
          { a:at -> (a,) <$> foldM (\b pv -> fpair pv \p v ->
            rewriteCase dcs v Tip [(p, b)]) x (zip at vt) })
          >>= \cs -> flip (foldr L) vs <$> rewriteCase dcs vh Tip cs
        }
    }
  };

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y;

rewriteCase dcs caseVar tab expr = let
  { rec = rewriteCase dcs caseVar
  ; go v x rest = case v of
    { PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    ; PatVar s m -> let { x' = beta s (V caseVar) x } in case m of
      { Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      ; Just v' -> go v' x' rest
      }
    ; PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
    }
  ; flush onFail = case toAscList tab of
    { [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    ; (firstC, _):_ -> let { cs = maybe undefined id $ mlookup firstC dcs } in
      mapM (\(Constr s ts) -> case mlookup s tab of
        { Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
        ; Just f -> rewritePats dcs $ f []
        }) cs >>= \jumpTable ->
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail
    }
  } in case expr of
  { [] -> flush $ V "join#"
  ; ((v, x):rest) -> go v x rest
  };

secondM f (a, b) = (a,) <$> f b;
patternCompile dcs t = let
  { go t = case t of
    { E _ -> pure t
    ; V _ -> pure t
    ; A x y -> liftA2 A (go x) (go y)
    ; L s x -> L s <$> go x
    ; Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs
    }
  } in optiApp $ evalState (go t) 0;

depGraph typed dcs (s, ast) (vs, es) = let
  { t = patternCompile dcs ast }
  in (insert s t vs, foldr (\k ios@(ins, outs) -> case lookup k typed of
    { Nothing -> (insertWith union k [s] ins, insertWith union s [k] outs)
    ; Just _ -> ios
    }) es $ fv [] t);

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex);

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex);

scc ins outs = let
  { depthFirst = snd . depthFirstSearch outs ([], [])
  ; spanning   = snd . spanningSearch   ins  ([], [])
  } in spanning . depthFirst;

inferno tycl typed defmap syms = let
  { loc = zip syms $ TV . (' ':) <$> syms
  } in foldM (\(acc, (subs, n)) s ->
      maybe (Left $ "missing: " ++ s) Right (mlookup s defmap) >>=
      \expr -> infer typed loc expr (subs, n) >>=
      \((t, a), (ms, n1)) -> unify (TV (' ':s)) t ms >>=
      \cs -> Right ((s, (t, a)):acc, (cs, n1))
    ) ([], ([], 0)) syms >>=
    \(stas, (soln, _)) -> mapM id $ (\(s, ta) -> prove tycl s $ typeAstSub soln ta) <$> stas;

prove ienv s (t, a) = flip fmap (prove' ienv ([], 0) a) \((ps, _), x) ->
  let { applyDicts expr = foldl A expr $ map (V . snd) ps }
  in (s, (Qual (map fst ps) t, foldr L (overFree s applyDicts x) $ map snd ps));
inferDefs' ienv defmap (typeTab, lambF) syms = let
  { add stas = foldr (\(s, (q, cs)) (tt, f) -> (insert s q tt, f . ((s, cs):))) (typeTab, lambF) stas
  } in add <$> inferno ienv typeTab defmap syms
  ;
inferDefs ienv defs dcs typed = let
  { typeTab = foldr (\(k, (q, _)) -> insert k q) Tip typed
  ; lambs = second snd <$> typed
  ; defmapgraph = foldr (depGraph typed dcs) (Tip, (Tip, Tip)) defs
  ; defmap = fst defmapgraph
  ; graph = snd defmapgraph
  ; ins k = maybe [] id $ mlookup k $ fst graph
  ; outs k = maybe [] id $ mlookup k $ snd graph
  } in foldM (inferDefs' ienv defmap) (typeTab, (lambs++)) $ scc ins outs $ map fst $ toAscList defmap
  ;

last' x xt = flst xt x \y yt -> last' y yt;
last xs = flst xs undefined last';
init (x:xt) = flst xt [] \_ _ -> x : init xt;
intercalate sep xs = flst xs [] \x xt -> x ++ concatMap (sep ++) xt;
intersperse sep xs = flst xs [] \x xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt);

argList t = case t of
  { TC s -> [TC s]
  ; TV s -> [TV s]
  ; TAp (TC "IO") (TC u) -> [TC u]
  ; TAp (TAp (TC "->") x) y -> x : argList y
  };

cTypeName (TC "()") = "void";
cTypeName (TC "Int") = "int";
cTypeName (TC "Char") = "int";

ffiDeclare (name, t) = let { tys = argList t } in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"];

ffiArgs n t = case t of
  { TC s -> ("", ((True, s), n))
  ; TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  ; TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ showInt n ")") ++) $ ffiArgs (n + 1) y
  };

ffiDefine n ffis = case ffis of
  { [] -> id
  ; (name, t):xt -> fpair (ffiArgs 2 t) \args ((isPure, ret), count) -> let
    { lazyn = ("lazy2(" ++) . showInt (if isPure then count - 1 else count + 1) . (", " ++)
    ; cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . showInt (count + 1) . ("), "++) . tgt . ("), arg("++) . showInt count . (")"++)
    ; longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    } in ("case " ++) . showInt n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("_K"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app(_NUM, r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt
  };

getContents = getChar >>= \n -> if n <= 255 then (chr n:) <$> getContents else pure [];

untangle s = fmaybe (program s) (Left "parse error") \(prog, rest) -> case rest of
  { ParseState s _ -> if s == ""
    then case foldr ($) (Neat Tip [] [] prims Tip [] []) $ primAdts ++ prog of
      { Neat ienv idefs defs typed dcs ffis exs
        -> inferDefs ienv (coalesce defs) dcs typed >>= \(qas, lambF)
        -> mapM (inferInst ienv dcs qas) idefs >>= \lambs
        -> pure ((qas, lambF lambs), (ffis, exs))
      }
    else Left $ "dregs: " ++ s
  };

optiComb' (subs, combs) (s, lamb) = let
  { gosub t = case t of
    { LfVar v -> maybe t id $ lookup v subs
    ; Nd a b -> Nd (gosub a) (gosub b)
    ; _ -> t
    }
  ; c = optim $ gosub $ nolam $ optiApp lamb
  ; combs' = combs . ((s, c):)
  } in case c of
  { Lf (Basic _) -> ((s, c):subs, combs')
  ; LfVar v -> if v == s then (subs, combs . ((s, Nd (lf "Y") (lf "I")):)) else ((s, gosub c):subs, combs')
  ; _ -> (subs, combs')
  };
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs;

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_init();rts_reduce(" ++ showInt n ");return 0;}\n";

compile s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), (ffis, exs)) -> fpair (asm $ optiComb lambs) \tab memF -> let { mem = snd memF [] } in
      ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> showInt n . (',':)) mem)
    . ("};\nstatic const u prog_size="++) . showInt (length mem) . (";\n"++)
    . ("static u root[]={" ++)
    . foldr (\(x, y) f -> maybe undefined showInt (mlookup y tab) . (", " ++) . f) id exs
    . ("0};\n" ++)
    . (preamble++)
    . (concatMap ffiDeclare ffis ++)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . ffiDefine (length ffis - 1) ffis
    . ("\n  }\n}\n" ++)
    . runFun
    . (foldr (.) id $ zipWith (\p n -> (("EXPORT(f" ++ showInt n ", \"" ++ fst p ++ "\", " ++ showInt n ")\n") ++)) exs (upFrom 0))
    $ maybe "" genMain (mlookup "main" tab)
  };

showVar s@(h:_) = (if elem h ":!#$%&*+./<=>?@\\^|-~" then par else id) (s++);

showExtra = \case
  { Basic s -> (s++)
  ; Const i -> showInt i
  ; ChrCon c -> ('\'':) . (c:) . ('\'':)
  ; StrCon s -> ('"':) . (s++) . ('"':)
  };
showPat = \case
  { PatLit t -> showAst False t
  ; PatVar s mp -> (s++) . maybe id ((('@':) .) . showPat) mp
  ; PatCon s ps -> (s++) . ("TODO"++)
  };
showAst prec t = case t of
  { E e -> showExtra e
  ; V s -> showVar s
  ; A x y -> (if prec then par else id) (showAst False x . (' ':) . showAst True y)
  ; L s t -> par $ ('\\':) . (s++) . (" -> "++) . showAst prec t
  ; Pa vsts -> ('\\':) . par (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (par . showPat) vs) . (" -> "++) . showAst False t) vsts)
  };

showTree prec t = case t of
  { LfVar s -> showVar s
  ; Lf extra -> showExtra extra
  ; Nd x y -> (if prec then par else id) (showTree False x . (' ':) . showTree True y)
  };
disasm (s, t) = (s++) . (" = "++) . showTree False t . (";\n"++);

dumpCombs s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), _) -> foldr ($) [] $ map disasm $ optiComb lambs
  };

dumpLambs s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), _) -> foldr ($) [] $
    (\(s, t) -> (s++) . (" = "++) . showAst False t . ('\n':)) <$> lambs
  };

showQual (Qual ps t) = foldr (.) id (map showPred ps) . showType t;

dumpTypes s = case untangle s of
  { Left err -> err
  ; Right ((typed, _), _) -> ($ "") $ foldr (.) id $
    map (\(s, q) -> (s++) . (" :: "++) . showQual q . ('\n':)) $ toAscList typed
  };

getArg' k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> getArg' (k + 1) n;
getArgs = getArgCount >>= \n -> mapM (getArg' 0) (take (n - 1) $ upFrom 1);

interact f = getContents >>= putStr . f;
main = getArgs >>= \case
  { "comb":_ -> interact dumpCombs
  ; "lamb":_ -> interact dumpLambs
  ; "type":_ -> interact dumpTypes
  ; _ -> interact compile
  };

comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
I x = "sp[1] = arg(1); sp++;"
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
DIV x y = "_NUM" "num(1) / num(2)"
MOD x y = "_NUM" "num(1) % num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
|];

comb = (,)
  <$> spc (some $ large)
  <*> ((,)
    <$> many (spc $ (:"") <$> small)
    <*> (spch '=' *> combExpr));
combExpr = foldl1 A <$> some
  (   V . (:"") <$> spc small
  <|> E . StrCon <$> litStr
  <|> paren combExpr
  );

comdefs = maybe undefined fst (parse (sp *> some comb) $ ParseState comdefsrc Tip);

comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) (upFrom 1);
comName i = maybe undefined id $ lookup i $ zip (upFrom 1) (fst <$> comdefs);

preamble = [r|#define EXPORT(f, sym, n) void f() asm(sym) __attribute__((export_name(sym))); void f(){rts_reduce(root[n]);}
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = mem;
  mem = altmem;
  altmem = spTop;
  spTop = sp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}

static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
|];

runFun = ([r|static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < prog_size; i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)
  ;

genArg m a = case a of
  { V s -> ("arg("++) . (maybe undefined showInt $ lookup s m) . (')':)
  ; E (StrCon s) -> (s++)
  ; A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
  };
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as;
genComb (s, (args, body)) = let
  { argc = ('(':) . showInt (length args)
  ; m = zip args $ upFrom 1
  } in ("case _"++) . (s++) . (':':) . (case body of
  { A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
  ; A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
  ; E (StrCon s) -> (s++)
  }) . ("break;\n"++)
  ;

Marginally

Landin’s off-side rule is sorely missed. Although cosmetic, layout parsing rules give Haskell a clean mathematical look.

We split off a lexer from our parser, and follow the rules in section 10.3 of the Haskell 2010 spec.

We add support for multiple predicates in the context of an instance. We should have done this before, as it’s just a small parser tweak; the rest of the code can already handle it.

This is a good moment to support do notation. We deviate from the spec. Trailing let statements are legal; they just have no effect. It is also legal for the last statement to be a binding, in which case we implicitly follow it with pure ().

We replace fpair and flst with more idiomatic Haskell.

-- Off-side rule.
infixr 9 .;
infixl 7 * , `div` , `mod`;
infixl 6 + , -;
infixr 5 ++;
infixl 4 <*> , <$> , <* , *>;
infix 4 == , /= , <=;
infixl 3 && , <|>;
infixl 2 ||;
infixl 1 >> , >>=;
infixr 0 $;

foreign import ccall "putchar" putChar :: Int -> IO Int;
foreign import ccall "getchar" getChar :: IO Int;
foreign import ccall "getargcount" getArgCount :: IO Int;
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char;

class Functor f where { fmap :: (a -> b) -> f a -> f b };
class Applicative f where
{ pure :: a -> f a
; (<*>) :: f (a -> b) -> f a -> f b
};
class Monad m where
{ return :: a -> m a
; (>>=) :: m a -> (a -> m b) -> m b
};
(<$>) = fmap;
liftA2 f x y = f <$> x <*> y;
(>>) f g = f >>= \_ -> g;
class Eq a where { (==) :: a -> a -> Bool };
instance Eq Int where { (==) = intEq };
instance Eq Char where { (==) = charEq };
($) f x = f x;
id x = x;
const x y = x;
flip f x y = f y x;
(&) x f = f x;
class Ord a where { (<=) :: a -> a -> Bool };
instance Ord Int where { (<=) = intLE };
instance Ord Char where { (<=) = charLE };
data Ordering = LT | GT | EQ;
compare x y = if x <= y then if y <= x then EQ else LT else GT;
instance Ord a => Ord [a] where {
  (<=) xs ys = case xs of
    { [] -> True
    ; x:xt -> case ys of
      { [] -> False
      ; y:yt -> case compare x y of
        { LT -> True
        ; GT -> False
        ; EQ -> xt <= yt
        }
      }
    }
};
data Maybe a = Nothing | Just a;
data Either a b = Left a | Right b;
fst (x, y) = x;
snd (x, y) = y;
uncurry f (x, y) = f x y;
first f (x, y) = (f x, y);
second f (x, y) = (x, f y);
not a = if a then False else True;
x /= y = not $ x == y;
(.) f g x = f (g x);
(||) f g = if f then True else g;
(&&) f g = if f then g else False;
instance Eq a => Eq [a] where { (==) xs ys = case xs of
  { [] -> case ys of
    { [] -> True
    ; _ -> False
    }
  ; x:xt -> case ys of
    { [] -> False
    ; y:yt -> x == y && xt == yt
    }
  }};
take 0 xs = [];
take _ [] = [];
take n (h:t) = h : take (n - 1) t;
maybe n j m = case m of { Nothing -> n; Just x -> j x };
instance Functor Maybe where { fmap f = maybe Nothing (Just . f) };
instance Applicative Maybe where { pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf };
instance Monad Maybe where { return = Just ; mf >>= mg = maybe Nothing mg mf };
foldr c n = \case { [] -> n; h:t -> c h $ foldr c n t };
length = foldr (\_ n -> n + 1) 0;
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure []);
mapM_ f = foldr ((>>) . f) (pure ());
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0;
instance Applicative IO where { pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y) };
instance Monad IO where { return = ioPure ; (>>=) = ioBind };
instance Functor IO where { fmap f x = ioPure f <*> x };
class Show a where { showsPrec :: Int -> a -> String -> String };
shows = showsPrec 0;
show x = shows x "";
showInt__ n
  | 0 == n = id
  | True = showInt__ (n`div`10) . (chr (48+n`mod`10):);
instance Show Int where
{ showsPrec _ n
    | 0 == n = ('0':)
    | 1 <= n = showInt__ n
    | 2 * n == 0 = ("-2147483648"++)
    | True = ('-':) . showInt__ (0 - n)
};
putStr = mapM_ $ putChar . ord;
getContents = getChar >>= \n -> if 0 <= n then (chr n:) <$> getContents else pure [];
interact f = getContents >>= putStr . f;
error s = unsafePerformIO $ putStr s >> putChar (ord '\n') >> exitSuccess;
undefined = error "undefined";
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l;
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a;
foldl1 f (h:t) = foldl f h t;
elem k xs = foldr (\x t -> x == k || t) False xs;
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs;
(++) = flip (foldr (:));
concat = foldr (++) [];
map = flip (foldr . ((:) .)) [];
head (h:_) = h;
tail (_:t) = t;
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160];
instance Functor [] where { fmap = map };
concatMap = (concat .) . map;
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing;
all f = foldr (&&) True . map f;
any f = foldr (||) False . map f;
and = foldr (&&) True;
or = foldr (||) False;
upFrom n = n : upFrom (n + 1);
zipWith f xs ys = case xs of { [] -> []; x:xt -> case ys of { [] -> []; y:yt -> f x y : zipWith f xt yt }};
zip = zipWith (,);
data State s a = State (s -> (a, s));
runState (State f) = f;
instance Functor (State s) where { fmap f = \(State h) -> State (first f . h) };
instance Applicative (State s) where
{ pure a = State (a,)
; (State f) <*> (State x) = State \s -> case f s of {(g, s') -> first g $ x s'}
};
instance Monad (State s) where
{ return a = State (a,)
; (State h) >>= f = State $ uncurry (runState . f) . h
};
evalState m s = fst $ runState m s;
get = State \s -> (s, s);
put n = State \s -> ((), n);
either l r e = case e of { Left x -> l x; Right x -> r x };
instance Functor (Either a) where { fmap f e = case e of
  { Left x -> Left x
  ; Right x -> Right $ f x
  }
};
instance Applicative (Either a) where { pure = Right ; ef <*> ex = case ef of
  { Left s -> Left s
  ; Right f -> case ex of
    { Left s -> Left s
    ; Right x -> Right $ f x
    }
  }
};
instance Monad (Either a) where { return = Right ; ex >>= f = case ex of
  { Left s -> Left s
  ; Right x -> f x
  }
};
class Alternative f where { empty :: f a ; (<|>) :: f a -> f a -> f a };
asum = foldr (<|>) empty;
(*>) = liftA2 \x y -> y;
(<*) = liftA2 \x y -> x;
many p = liftA2 (:) p (many p) <|> pure [];
some p = liftA2 (:) p (many p);
sepBy1 p sep = liftA2 (:) p (many (sep *> p));
sepBy p sep = sepBy1 p sep <|> pure [];
between x y p = x *> (p <* y);

-- Map.

data Map k a = Tip | Bin Int k a (Map k a) (Map k a);
size m = case m of { Tip -> 0 ; Bin sz _ _ _ _ -> sz };
node k x l r = Bin (1 + size l + size r) k x l r;
singleton k x = Bin 1 k x Tip Tip;
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr;
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr);
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r);
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r);
balance k x l r = (if size l + size r <= 1
  then node
  else if 5 * size l + 3 <= 2 * size r
    then case r of
      { Tip -> node
      ; Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
      }
    else if 5 * size r + 3 <= 2 * size l
      then case l of
        { Tip -> node
        ; Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
          then singleR
          else doubleR
        }
      else node
  ) k x l r;
insert kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sz ky y l r -> case compare kx ky of
    { LT -> balance ky y (insert kx x l) r
    ; GT -> balance ky y l (insert kx x r)
    ; EQ -> Bin sz kx x l r
    }
  };
insertWith f kx x t = case t of
  { Tip -> singleton kx x
  ; Bin sy ky y l r -> case compare kx ky of
    { LT -> balance ky y (insertWith f kx x l) r
    ; GT -> balance ky y l (insertWith f kx x r)
    ; EQ -> Bin sy kx (f x y) l r
    }
  };
mlookup kx t = case t of
  { Tip -> Nothing
  ; Bin _ ky y l r -> case compare kx ky of
    { LT -> mlookup kx l
    ; GT -> mlookup kx r
    ; EQ -> Just y
    }
  };
fromList = foldl (\t (k, x) -> insert k x t) Tip;

foldrWithKey f = let
  { go z t = case t of
    { Tip -> z
    ; Bin _ kx x l r -> go (f kx x (go z r)) l
    }
  } in go;

toAscList = foldrWithKey (\k x xs -> (k,x):xs) [];

-- Syntax tree.

data Type = TC String | TV String | TAp Type Type;
arr a b = TAp (TAp (TC "->") a) b;
data Extra = Basic String | Const Int | ChrCon Char | StrCon String;
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat];
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred;
data Constr = Constr String [Type];
data Pred = Pred String Type;
data Qual = Qual [Pred] Type;
noQual = Qual [];

data Neat = Neat
  -- | Instance environment.
  (Map String [(String, Qual)])
  -- | Instance definitions.
  [(String, (Qual, [(String, Ast)]))]
  -- | Top-level definitions
  [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]
  ;

ro = E . Basic;
conOf (Constr s _) = s;
specialCase (h:_) = '|':conOf h;
mkCase t cs = (specialCase cs,
  ( noQual $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
  , ro "I"));
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", []);
scottEncode _ ":" _ = ro "CONS";
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs);
scottConstr t cs c = case c of { Constr s ts -> (s,
  ( noQual $ foldr arr t ts
  , scottEncode (map conOf cs) s $ mkStrs ts)) };
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs;

mkFFIHelper n t acc = case t of
  { TC s -> acc
  ; TAp (TC "IO") _ -> acc
  ; TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc
  };

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs;
addAdt t cs (Neat ienv defs fs typed dcs ffis exs) =
  Neat ienv defs fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis exs;

addClass classId v ms (Neat ienv idefs fs typed dcs ffis exs) = let
  { vars = zipWith (\_ n -> show n) ms $ upFrom 0
  } in Neat ienv idefs fs (zipWith (\var (s, t) ->
    (s, (Qual [Pred classId v] t,
      L "@" $ A (V "@") $ foldr L (V var) vars))) vars ms ++ typed) dcs ffis exs;
dictName cl (Qual _ t) = '{':cl ++ (' ':show t) ++ "}";
addInst cl q ds (Neat ienv idefs fs typed dcs ffis exs) = let { name = dictName cl q } in
  Neat (insertWith (++) cl [(name, q)] ienv) ((name, (q, ds)):idefs) fs typed dcs ffis exs;
addFFI foreignname ourname t (Neat ienv idefs fs typed dcs ffis exs) = let
  { fn = A (ro "F") $ E $ Const $ length ffis
  } in Neat ienv idefs fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) exs;
addDefs ds (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs (ds ++ fs) typed dcs ffis exs;
addExport e f (Neat ienv idefs fs typed dcs ffis exs) = Neat ienv idefs fs typed dcs ffis ((e, f):exs);

-- Parser.
data ParserState = ParserState
  [(Char, (Int, Int))]
  String
  [Int]
  (Map String (Int, Assoc));

readme  (ParserState x _ _ _) = x;
landin  (ParserState _ x _ _) = x;
indents (ParserState _ _ x _) = x;
precs   (ParserState _ _ _ x) = x;
putReadme  x (ParserState _ a b c) = ParserState x a b c;
putLandin  x (ParserState a _ b c) = ParserState a x b c;
modIndents f (ParserState a b x c) = ParserState a b (f x) c;
data Parser a = Parser (ParserState -> Either String (a, ParserState));
getParser (Parser p) = p;
instance Functor Parser where { fmap f x = pure f <*> x };
instance Applicative Parser where
{ pure x = Parser \inp -> Right (x, inp)
; (Parser f) <*> (Parser x) = Parser \inp ->
  f inp >>= \(fun, t) ->
  x t >>= \(arg, u) ->
  pure (fun arg, u)
};
instance Monad Parser where
{ return = pure
; (Parser x) >>= f = Parser \inp -> x inp >>= \(a, t) -> getParser (f a) t
};
instance Alternative Parser where
{ empty = bad ""
; x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp
};
getPrecs = Parser \st -> Right (precs st, st);
putPrecs ps = Parser \(ParserState a b c _) -> Right ((), ParserState a b c ps);

notFollowedBy p =
  (Parser \pasta -> Right (pasta, pasta)) >>= \saved ->
  p *> pure (bad "") <|> pure (pure ()) >>= \ret ->
  (Parser \_ -> Right ((), saved)) >> ret;

parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] $ singleton ":" (5, RAssoc) where
{ rowcol s rc = case s of
  { [] -> []
  ; h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
  };
; advanceRC n (r, c)
    | n `elem` [10, 11, 12, 13] = (r + 1, 1)
    | n == 9 = (r, (c + 8)`mod`8)
    | True = (r, c + 1)
    ;
};
indentOf pasta = case readme pasta of
{ [] -> 1
; (_, (_, c)):_ -> c
};
ins c pasta = putLandin (c:landin pasta) pasta;

angle n pasta = case indents pasta of
{ m:ms | m == n -> ins ';' pasta
       | n + 1 <= m -> ins '}' $ angle n $ modIndents tail pasta
; _ -> pasta
};
curly n pasta = case indents pasta of
{ m:ms | m + 1 <= n -> ins '{' $ modIndents (n:) pasta
; [] | 1 <= n -> ins '{' $ modIndents (n:) pasta
; _ -> ins '{' . ins '}' $ angle n pasta
};
sat f = Parser \pasta -> case landin pasta of
{ c:t -> if f c then Right (c, putLandin t pasta) else Left "unsat"
; [] -> case readme pasta of
  { [] -> case indents pasta of
    { [] -> Left "EOF"
    ; m:ms | m /= 0 && f '}' -> Right ('}', modIndents tail pasta)
    ; _ -> Left "unsat"
    }
  ; (h, _):t | f h -> let { p' = putReadme t pasta } in case h of
      { '}' -> case indents pasta of
        { 0:ms -> Right (h, modIndents tail p')
        ; _ -> Left "unsat"
        }
      ; '{' -> Right (h, modIndents (0:) p')
      ; _ -> Right (h, p')
      }
  ; _ -> Left "unsat"
  }
};
char c = sat (c ==);

rawSat f = Parser \pasta -> case readme pasta of
{ [] -> Left "EOF"
; (h, _):t -> if f h then Right (h, putReadme t pasta) else Left "unsat"
};

eof = Parser \pasta -> case pasta of
{ ParserState [] [] _ _ -> Right ((), pasta)
; _ -> badpos pasta "want eof"
};

comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
  (rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True;
spaces = isNewline <$> rawSat isSpace;
whitespace = or <$> many (spaces <|> comment) >>= \offside ->
  Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta);

hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a'
  ;
isNewline c = ord c `elem` [10, 11, 12, 13];
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:");
isSmall c = c <= 'z' && 'a' <= c || c == '_';
small = sat isSmall;
large = sat \x -> (x <= 'Z') && ('A' <= x);
hexit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x);
digit = sat \x -> (x <= '9') && ('0' <= x);
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit;
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit;
nameTailChar = small <|> large <|> digit <|> char '\'';
nameTailed p = liftA2 (:) p $ many nameTailChar;

escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal));
tokOne delim = escape <|> rawSat (delim /=);

charSeq = mapM char;
tokChar = between (char '\'') (char '\'') (tokOne '\'');
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"';
quasiquoteStr = charSeq "[r|" *> quasiquoteBody;
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody;
tokStr = quoteStr <|> quasiquoteStr;
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal;
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr;
varish = lexeme $ nameTailed small;
bad s = Parser \pasta -> badpos pasta s;
badpos pasta s = Left $ loc $ ": " ++ s where
{ loc = case readme pasta of
  { [] -> ("EOF"++)
  ; (_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
  }
};
varId = varish >>= \s -> if elem s
  ["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
    then bad $ "reserved: " ++ s else pure s;
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol);
varSym = lexeme $ varSymish >>= \s -> if elem s
  ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s;

conId = lexeme $ nameTailed large;
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol;
conSym = conSymish >>= \s -> if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s;
special c = lexeme $ sat (c ==);
comma = special ',';
semicolon = special ';';
lParen = special '(';
rParen = special ')';
lBrace = special '{';
rBrace = special '}';
lSquare = special '[';
rSquare = special ']';
backquote = special '`';

lexeme f = f <* whitespace;

lexemePrelude = whitespace *>
  Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
  { Left _ -> Right ((), curly (indentOf pasta) pasta)
  ; Right _ -> Right ((), pasta)
  };

curlyCheck f =
  (Parser \pasta -> Right ((), modIndents (0:) pasta)) >>
  f >>= \r ->
  (Parser \pasta -> let { pasta' = modIndents tail pasta } in case readme pasta of
  { []              -> Right ((), curly 0 pasta')
  ; ('{', _):_      -> Right ((), pasta')
  ; (_, (_, col)):_ -> Right ((), curly col pasta')
  }) >>
  pure r;

patVars = \case
  { PatLit _ -> []
  ; PatVar s m -> s : maybe [] patVars m
  ; PatCon _ args -> concat $ patVars <$> args
  };

union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys;
fv bound = \case
  { V s | not (elem s bound) -> [s]
  ; A x y -> fv bound x `union` fv bound y
  ; L s t -> fv (s:bound) t
  ; _ -> []
  };

fvPro bound expr = case expr of
  { V s | not (elem s bound) -> [s]
  ; A x y -> fvPro bound x `union` fvPro bound y
  ; L s t -> fvPro (s:bound) t
  ; Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  ; _ -> []
  };

overFree s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFree s f x) (overFree s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFree s f t'
  };

overFreePro s f t = case t of
  { E _ -> t
  ; V s' -> if s == s' then f t else t
  ; A x y -> A (overFreePro s f x) (overFreePro s f y)
  ; L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
  ; Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts
  };

beta s t x = overFree s (const t) x;

showParen b f = if b then ('(':) . f . (')':) else f;

parseErrorRule = Parser \pasta -> case indents pasta of
{ m:ms | m /= 0 -> Right ('}', modIndents tail pasta)
; _ -> badpos pasta "missing }"
};

res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
{ reservedSeq = if elem w ["let", "where", "do", "of"]
    then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
    else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol) };

paren = between lParen rParen;
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon;

maybeFix s x = if elem s $ fvPro [] x then A (ro "Y") (L s x) else x;

nonemptyTails [] = [];
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt;

joinIsFail t = A (L "join#" t) (V "fail#");

addLets ls x = let
  { vs = fst <$> ls
  ; ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  ; components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  ; triangle names expr = let
    { tnames = nonemptyTails names
    ; suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
    ; insLams vs t = foldr L t vs
    } in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames
  } in foldr triangle x components;

data Assoc = NAssoc | LAssoc | RAssoc;
instance Eq Assoc where
{ NAssoc == NAssoc = True
; LAssoc == LAssoc = True
; RAssoc == RAssoc = True
; _ == _ = False
};
precOf s precTab = maybe 9 fst $ mlookup s precTab;
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab;

opFold precTab f x xs = case xs of
  { [] -> pure x
  ; (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
    { Nothing -> case assocOf op precTab of
      { NAssoc -> case xt of
        { [] -> pure $ f op x y
        ; y:yt -> bad "NAssoc repeat"
        }
      ; LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
      ; RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
      }
    ; Just y -> bad "Assoc clash"
    }
  };
qconop = conSym <|> res ":" <|> between backquote backquote conId;

qconsym = conSym <|> res ":";

op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId);
con = conId <|> paren qconsym;
var = varId <|> paren varSym;

tycon = conId >>= \s -> pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s;

aType =
  lParen *>
    (   rParen *> pure (TC "()")
    <|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
  <|> tycon
  <|> TV <$> varId
  <|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
  ;
bType = foldl1 TAp <$> some aType;
_type = foldr1 arr <$> sepBy bType (res "->");

fixityDecl w a = res w >>
  lexeme integer >>= \n ->
  sepBy op comma >>= \os ->
  getPrecs >>= \precs ->
  putPrecs $ foldr (\o m -> insert o (n, a) m) precs os;
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc;

genDecl = (,) <$> var <*> (res "::" *> _type);

classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> braceSep genDecl));

simpleClass = Pred <$> conId <*> _type;
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma);

instDecl = res "instance" *>
  ((\ps cl ty defs -> addInst cl (Qual ps ty) defs) <$>
  (scontext <* res "=>" <|> pure [])
    <*> conId <*> _type <*> (res "where" *> braceDef));

letin = addLets <$> between (res "let") (res "in") braceDef <*> expr;
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr);
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]");

alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->");
cas = flip A <$> between (res "case") (res "of") expr <*> alts;
lamCase = curlyCheck (res "case") *> alts;
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr));

flipPairize y x = A (A (V ",") x) y;
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma;
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")));
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id);
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr;
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"));

maybePureUnit = maybe (V "pure" `A` V "()") id;
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
  <|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
  <|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
  ;
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt);

sqList r = between lSquare rSquare $ sepBy r comma;
atom = ifthenelse <|> doblock <|> letin <|> listify <$> sqList expr <|> section
  <|> cas <|> lam <|> (paren comma *> pure (V ","))
  <|> V <$> (con <|> var) <|> literal;

aexp = foldl1 A <$> some atom;

withPrec precTab n p = p >>= \s ->
  if n == precOf s precTab then pure s else Parser $ const $ Left "";

exprP n = if n <= 9
  then getPrecs >>= \precTab
    -> exprP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
    -> opFold precTab (\op x y -> A (A (V op) x) y) a as
  else aexp;
expr = exprP 0;

gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]");

apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatVar Nothing <$> (res "_" *> pure "_")
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> literal
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" []) <$> sqList pat
  <|> paren ((&) <$> pat <*> ((comma *> ((\y x -> PatCon "," [x, y]) <$> pat)) <|> pure id))
  ;

binPat f x y = PatCon f [x, y];
patP n = if n <= 9
  then getPrecs >>= \precTab
    -> patP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
    -> opFold precTab binPat a as
  else PatCon <$> gcon <*> many apat <|> apat
  ;
pat = patP 0;

maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id);

guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  { V "True" -> \_ -> y
  ; _ -> A (A (A (V "if") x) y)
  }) <$> (res "|" *> expr) <*> (res s *> expr));

onePat vs x = joinIsFail $ Pa [(vs, x)];
defOnePat vs x = Pa [(vs, x)];
opDef x f y rhs = [(f, defOnePat [x, y] rhs)];
leftyPat p expr = case patVars p of
  { [] -> []
  ; pvars@(h:t) -> let { gen = '@':h } in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  };
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=");
coalesce = \case
  { [] -> []
  ; h@(s, x):t -> case t of
    { [] -> [h]
    ; (s', x'):t' -> let
      { f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
      ; f _ _ = error "bad multidef"
      } in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
    }
  };
defSemi = coalesce . concat <$> sepBy1 def (some semicolon);
braceDef = concat <$> braceSep defSemi;

simpleType c vs = foldl TAp (TC c) (map TV vs);
conop = conSym <|> between backquote backquote conId;
constr = (\x c y -> Constr c [x, y]) <$> aType <*> conop <*> aType
  <|> Constr <$> conId <*> many aType;
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|");

topdecls = braceSep
  (   adt
  <|> classDecl
  <|> instDecl
  <|> res "foreign" *>
    (   res "import" *> var *> (addFFI <$> lexeme tokStr <*> var <*> (res "::" *> _type))
    <|> res "export" *> var *> (addExport <$> lexeme tokStr <*> var)
    )
  <|> addDefs <$> defSemi
  <|> fixity *> pure id
  );

program s = parse (between lexemePrelude eof topdecls) s;

-- Primitives.

primAdts =
  [ addAdt (TC "()") [Constr "()" []]
  , addAdt (TC "Bool") [Constr "True" [], Constr "False" []]
  , addAdt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
  , addAdt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]];

prims = let
  { ii = arr (TC "Int") (TC "Int")
  ; iii = arr (TC "Int") ii
  ; bin s = A (ro "Q") (ro s) } in map (second (first noQual)) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ] ++ map (\(s, v) -> (s, (iii, bin v)))
      [ ("+", "ADD")
      , ("-", "SUB")
      , ("*", "MUL")
      , ("div", "DIV")
      , ("mod", "MOD")
      , ("intAdd", "ADD")
      , ("intSub", "SUB")
      , ("intMul", "MUL")
      , ("intDiv", "DIV")
      , ("intMod", "MOD")
      ];

-- Conversion to De Bruijn indices.

data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC;

debruijn n e = case e of
  { E x -> Pass $ Lf x
  ; V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  ; A x y -> App (debruijn n x) (debruijn n y)
  ; L s t -> La (debruijn (s:n) t)
  };

-- Kiselyov bracket abstraction.

data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree;
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem;

lf = Lf . Basic;

ldef y = case y of
  { Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
  ; Closed d -> Need $ Closed (Nd (lf "T") d)
  ; Need e -> Need $ (Closed (Nd (lf "S") (lf "I"))) ## e
  ; Weak e -> Need $ (Closed (lf "T")) ## e
  };

lclo d y = case y of
  { Defer -> Need $ Closed d
  ; Closed dd -> Closed $ Nd d dd
  ; Need e -> Need $ (Closed (Nd (lf "B") d)) ## e
  ; Weak e -> Weak $ (Closed d) ## e
  };

lnee e y = case y of
  { Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
  ; Closed d -> Need $ Closed (Nd (lf "R") d) ## e
  ; Need ee -> Need $ Closed (lf "S") ## e ## ee
  ; Weak ee -> Need $ Closed (lf "C") ## e ## ee
  };

lwea e y = case y of
  { Defer -> Need e
  ; Closed d -> Weak $ e ## Closed d
  ; Need ee -> Need $ (Closed (lf "B")) ## e ## ee
  ; Weak ee -> Weak $ e ## ee
  };

x ## y = case x of
  { Defer -> ldef y
  ; Closed d -> lclo d y
  ; Need e -> lnee e y
  ; Weak e -> lwea e y
  };

babs t = case t of
  { Ze -> Defer
  ; Su x -> Weak (babs x)
  ; Pass x -> Closed x
  ; La t -> case babs t of
    { Defer -> Closed (lf "I")
    ; Closed d -> Closed (Nd (lf "K") d)
    ; Need e -> e
    ; Weak e -> Closed (lf "K") ## e
    }
  ; App x y -> babs x ## babs y
  };

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x;

optim t = let
  { go (Lf (Basic "I")) q = q
  ; go p q@(Lf (Basic c)) = case c of
    { "I" -> case p of
      { Lf (Basic "C") -> lf "T"
      ; Lf (Basic "B") -> lf "I"
      ; Nd p1 p2 -> case p1 of
        { Lf (Basic "B") -> p2
        ; Lf (Basic "R") -> Nd (lf "T") p2
        ; _ -> Nd (Nd p1 p2) q
        }
      ; _ -> Nd p q
      }
    ; "T" -> case p of
      { Nd (Lf (Basic "B")) (Lf (Basic "C")) -> lf "V"
      ; _ -> Nd p q
      }
    ; _ -> Nd p q
    }
  ; go p q = Nd p q
  } in case t of
  { Nd x y -> go (optim x) (optim y)
  ; _ -> t
  };

freeCount v expr = case expr of
  { E _ -> 0
  ; V s -> if s == v then 1 else 0
  ; A x y -> freeCount v x + freeCount v y
  ; L w t -> if v == w then 0 else freeCount v t
  };

app01 s x = let { n = freeCount s x } in case n of
  { 0 -> const x
  ; 1 -> flip (beta s) x
  ; _ -> A $ L s x
  };
optiApp t = case t of
  { A (L s x) y -> app01 s (optiApp x) (optiApp y)
  ; A x y -> A (optiApp x) (optiApp y)
  ; L s x -> L s (optiApp x)
  ; _ -> t
  };

-- Type checking.

apply sub t = case t of
  { TC v -> t
  ; TV v -> maybe t id $ lookup v sub
  ; TAp a b -> TAp (apply sub a) (apply sub b)
  };

(@@) s1 s2 = map (second (apply s1)) s2 ++ s1;

occurs s t = case t of
  { TC v -> False
  ; TV v -> s == v
  ; TAp a b -> occurs s a || occurs s b
  };

varBind s t = case t of
  { TC v -> Right [(s, t)]
  ; TV v -> Right $ if v == s then [] else [(s, t)]
  ; TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]
  };

mgu t u = case t of
  { TC a -> case u of
    { TC b -> if a == b then Right [] else Left "TC-TC clash"
    ; TV b -> varBind b t
    ; TAp a b -> Left "TC-TAp clash"
    }
  ; TV a -> varBind a u
  ; TAp a b -> case u of
    { TC b -> Left "TAp-TC clash"
    ; TV b -> varBind b t
    ; TAp c d -> mgu a c >>= unify b d
    }
  };

unify a b s = (@@ s) <$> mgu (apply s a) (apply s b);

instantiate' t n tab = case t of
  { TC s -> ((t, n), tab)
  ; TV s -> case lookup s tab of
    { Nothing -> let { va = TV $ show n} in ((va, n + 1), (s, va):tab)
    ; Just v -> ((v, n), tab)
    }
  ; TAp x y -> let
    { ((t1, n1), tab1) = instantiate' x n tab
    ; ((t2, n2), tab2) = instantiate' y n1 tab1
    } in ((TAp t1 t2, n2), tab2)
  };

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab);

instantiate (Qual ps t) n = let
  { ((ps1, n1), tab) = foldr instantiatePred (([], n), []) ps
  } in first (Qual ps1) $ fst $ instantiate' t n1 tab;

proofApply sub a = case a of
  { Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  ; A x y -> A (proofApply sub x) (proofApply sub y)
  ; L s t -> L s $ proofApply sub t
  ; _ -> a
  };

typeAstSub sub (t, a) = (apply sub t, proofApply sub a);

infer typed loc ast csn@(cs, n) = let
  { va = TV $ show n
  ; insta ty = let { (Qual preds ty1, n1) = instantiate ty n } in
    ((ty1, foldl A ast (map Proof preds)), (cs, n1))
  } in case ast of
  { E x -> Right $ case x of
    { Basic "Y" -> insta $ noQual $ arr (arr (TV "a") (TV "a")) (TV "a")
    ; Const _ -> ((TC "Int", ast), csn)
    ; ChrCon _ -> ((TC "Char", ast), csn)
    ; StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
    }
  ; V s -> maybe
    (maybe (error $ "depGraph bug! " ++ s) (Right . insta) $ mlookup s typed)
    (\t -> Right ((t, ast), csn))
    $ lookup s loc
  ; A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  ; L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  };

instance Eq Type where
  { (TC s) == (TC t) = s == t
  ; (TV s) == (TV t) = s == t
  ; (TAp a b) == (TAp c d) = a == c && b == d
  ; _ == _ = False
  };

instance Eq Pred where { (Pred s a) == (Pred t b) = s == t && a == b };

filter f = foldr (\x xs -> if f x then x:xs else xs) [];
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs;

merge s1 s2 = if all (\v -> apply s1 (TV v) == apply s2 (TV v))
  $ map fst s1 `intersect` map fst s2 then Just $ s1 ++ s2 else Nothing;

match h t = case h of
  { TC a -> case t of
    { TC b | a == b -> Just []
    ; _ -> Nothing
    }
  ; TV a -> Just [(a, t)]
  ; TAp a b -> case t of
    { TAp c d -> case match a c of
      { Nothing -> Nothing
      ; Just ac -> case match b d of
        { Nothing -> Nothing
        ; Just bd -> merge ac bd
        }
      }
    ; _ -> Nothing
    }
  };

findInst ienv qn@(q, n) p@(Pred cl ty) insts = case insts of
  { [] -> let { v = '*':show n } in Right (((p, v):q, n + 1), V v)
  ; (name, Qual ps h):is -> case match h ty of
    { Nothing -> findInst ienv qn p is
    ; Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof ienv (Pred cl1 $ apply subs ty1) qn1) (qn, V name) ps
  }};

findProof ienv pred psn@(ps, n) = case lookup pred ps of
  { Nothing -> case pred of { Pred s t -> case mlookup s ienv of
    { Nothing -> Left $ "no instances: " ++ s
    ; Just insts -> findInst ienv psn pred insts
    }}
  ; Just s -> Right (psn, V s)
  };

prove' ienv psn a = case a of
  { Proof pred -> findProof ienv pred psn
  ; A x y -> prove' ienv psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove' ienv psn1 y
  ; L s t -> second (L s) <$> prove' ienv psn t
  ; _ -> Right (psn, a)
  };

dictVars ps n = (zip ps $ map (('*':) . show) $ upFrom n, n + length ps);

-- The 4th argument: e.g. Qual [Eq a] "[a]" for Eq a => Eq [a].
inferMethod ienv dcs typed (Qual psi ti) (s, expr) =
  infer typed [] (patternCompile dcs expr) ([], 0) >>=
  \(ta, (sub, n)) -> let { (tx, ax) = typeAstSub sub ta } in case mlookup s typed of
    { Nothing -> Left $ "no such method: " ++ s
    -- e.g. qc = Eq a => a -> a -> Bool
    -- We instantiate: Eq a1 => a1 -> a1 -> Bool.
    ; Just qc -> let
      { (Qual [Pred _ headT] tc, n1) = instantiate qc n
      -- We mix the predicates `psi` with the type of `headT`, applying a
      -- substitution such as (a1, [a]) so the variable names match.
      -- e.g. Eq a => [a] -> [a] -> Bool
      -- Then instantiate and match.
      } in case match headT ti of { Just subc -> let
        { (Qual ps2 t2, n2) = instantiate (Qual psi $ apply subc tc) n1
        } in case match tx t2 of
          { Nothing -> Left "class/instance type conflict"
          ; Just subx -> snd <$> prove' ienv (dictVars ps2 0) (proofApply subx ax)
          }}};

inferInst ienv dcs typed (name, (q@(Qual ps t), ds)) = let { dvs = map snd $ fst $ dictVars ps 0 } in
  (name,) . flip (foldr L) dvs . L "@" . foldl A (V "@") <$> mapM (inferMethod ienv dcs typed q) ds;

-- Pattern compiler.
rewritePats dcs = \case
  { [] -> pure $ V "join#"
  ; vsxs@((as0, _):_) -> case as0 of
    { [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    ; _ -> let { k = length as0 } in get >>= \n -> put (n + k)
      >> let { vs@(vh:vt) = take k $ (`shows` "#") <$> upFrom n } in
      (flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at vt))
        >>= \cs -> flip (foldr L) vs <$> rewriteCase dcs vh Tip cs
    }
  };

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y;

rewriteCase dcs caseVar tab expr = let
  { rec = rewriteCase dcs caseVar
  ; go v x rest = case v of
    { PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    ; PatVar s m -> let { x' = beta s (V caseVar) x } in case m of
      { Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      ; Just v' -> go v' x' rest
      }
    ; PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
    }
  ; flush onFail = case toAscList tab of
    { [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    ; (firstC, _):_ -> let { cs = maybe undefined id $ mlookup firstC dcs } in
      mapM (\(Constr s ts) -> case mlookup s tab of
        { Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
        ; Just f -> rewritePats dcs $ f []
        }) cs >>= \jumpTable ->
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail
    }
  } in case expr of
  { [] -> flush $ V "join#"
  ; ((v, x):rest) -> go v x rest
  };

secondM f (a, b) = (a,) <$> f b;
patternCompile dcs t = let
  { go t = case t of
    { E _ -> pure t
    ; V _ -> pure t
    ; A x y -> liftA2 A (go x) (go y)
    ; L s x -> L s <$> go x
    ; Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs
    }
  } in optiApp $ evalState (go t) 0;

depGraph typed dcs (s, ast) (vs, es) = let
  { t = patternCompile dcs ast }
  in (insert s t vs, foldr (\k ios@(ins, outs) -> case lookup k typed of
    { Nothing -> (insertWith union k [s] ins, insertWith union s [k] outs)
    ; Just _ -> ios
    }) es $ fv [] t);

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex);

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex);

scc ins outs = let
  { depthFirst = snd . depthFirstSearch outs ([], [])
  ; spanning   = snd . spanningSearch   ins  ([], [])
  } in spanning . depthFirst;

inferno tycl typed defmap syms = let
  { loc = zip syms $ TV . (' ':) <$> syms
  } in foldM (\(acc, (subs, n)) s ->
      maybe (Left $ "missing: " ++ s) Right (mlookup s defmap) >>=
      \expr -> infer typed loc expr (subs, n) >>=
      \((t, a), (ms, n1)) -> unify (TV (' ':s)) t ms >>=
      \cs -> Right ((s, (t, a)):acc, (cs, n1))
    ) ([], ([], 0)) syms >>=
    \(stas, (soln, _)) -> mapM id $ (\(s, ta) -> prove tycl s $ typeAstSub soln ta) <$> stas;

prove ienv s (t, a) = flip fmap (prove' ienv ([], 0) a) \((ps, _), x) ->
  let { applyDicts expr = foldl A expr $ map (V . snd) ps }
  in (s, (Qual (map fst ps) t, foldr L (overFree s applyDicts x) $ map snd ps));
inferDefs' ienv defmap (typeTab, lambF) syms = let
  { add stas = foldr (\(s, (q, cs)) (tt, f) -> (insert s q tt, f . ((s, cs):))) (typeTab, lambF) stas
  } in add <$> inferno ienv typeTab defmap syms
  ;
inferDefs ienv defs dcs typed = let
  { typeTab = foldr (\(k, (q, _)) -> insert k q) Tip typed
  ; lambs = second snd <$> typed
  ; (defmap, graph) = foldr (depGraph typed dcs) (Tip, (Tip, Tip)) defs
  ; ins k = maybe [] id $ mlookup k $ fst graph
  ; outs k = maybe [] id $ mlookup k $ snd graph
  } in foldM (inferDefs' ienv defmap) (typeTab, (lambs++)) $ scc ins outs $ map fst $ toAscList defmap
  ;

last (x:xt) = let { go x xt = case xt of { [] -> x; y:yt -> go y yt }} in go x xt;
init (x:xt) = case xt of { [] -> []; _ -> x : init xt };
intercalate sep = \case { [] -> []; x:xt -> x ++ concatMap (sep ++) xt };
intersperse sep = \case { [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt) };

argList t = case t of
  { TC s -> [TC s]
  ; TV s -> [TV s]
  ; TAp (TC "IO") (TC u) -> [TC u]
  ; TAp (TAp (TC "->") x) y -> x : argList y
  };

cTypeName (TC "()") = "void";
cTypeName (TC "Int") = "int";
cTypeName (TC "Char") = "int";

ffiDeclare (name, t) = let { tys = argList t } in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"];

ffiArgs n t = case t of
  { TC s -> ("", ((True, s), n))
  ; TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  ; TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ shows n ")") ++) $ ffiArgs (n + 1) y
  };

ffiDefine n ffis = case ffis of
  { [] -> id
  ; (name, t):xt -> let
    { (args, ((isPure, ret), count)) = ffiArgs 2 t
    ; lazyn = ("lazy2(" ++) . shows (if isPure then count - 1 else count + 1) . (", " ++)
    ; cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . shows (count + 1) . ("), "++) . tgt . ("), arg("++) . shows count . (")"++)
    ; longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    } in ("case " ++) . shows n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("_K"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app(_NUM, r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt
  };

untangle s = case fst <$> program s of
  { Left e -> Left $ "parse error: " ++ e
  ; Right prog -> case foldr ($) (Neat Tip [] [] prims Tip [] []) $ primAdts ++ prog of
    { Neat ienv idefs defs typed dcs ffis exs
      -> inferDefs ienv defs dcs typed >>= \(qas, lambF)
      -> mapM (inferInst ienv dcs qas) idefs >>= \lambs
      -> pure ((qas, lambF lambs), (ffis, exs))
    }
  };

optiComb' (subs, combs) (s, lamb) = let
  { gosub t = case t of
    { LfVar v -> maybe t id $ lookup v subs
    ; Nd a b -> Nd (gosub a) (gosub b)
    ; _ -> t
    }
  ; c = optim $ gosub $ nolam $ optiApp lamb
  ; combs' = combs . ((s, c):)
  } in case c of
  { Lf (Basic _) -> ((s, c):subs, combs')
  ; LfVar v -> if v == s then (subs, combs . ((s, Nd (lf "Y") (lf "I")):)) else ((s, gosub c):subs, combs')
  ; _ -> (subs, combs')
  };
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs;

instance Show Type where
{ showsPrec _ = \case
  { TC s -> (s++)
  ; TV s -> (s++)
  ; TAp (TAp (TC "->") a) b -> showParen True $ shows a . (" -> "++) . shows b
  ; TAp a b -> showParen True $ shows a . (' ':) . shows b
  }
};
instance Show Pred where { showsPrec _ (Pred s t) = (s++) . (' ':) . shows t . (" => "++) };
instance Show Qual where { showsPrec _ (Qual ps t) = foldr (.) id (map shows ps) . shows t };
instance Show Extra where
{ showsPrec _ = \case
  { Basic s -> (s++)
  ; Const i -> shows i
  ; ChrCon c -> ('\'':) . (c:) . ('\'':)
  ; StrCon s -> ('"':) . (s++) . ('"':)
  }
};
instance Show Pat where
{ showsPrec _ = \case
  { PatLit t -> shows t
  ; PatVar s mp -> (s++) . maybe id ((('@':) .) . shows) mp
  ; PatCon s ps -> (s++) . ("TODO"++)
  }
};
showVar s@(h:_) = showParen (elem h ":!#$%&*+./<=>?@\\^|-~") (s++);
instance Show Ast where
{ showsPrec prec = \case
  { E e -> shows e
  ; V s -> showVar s
  ; A x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y
  ; L s t -> showParen True $ ('\\':) . (s++) . (" -> "++) . shows t
  ; Pa vsts -> ('\\':) . showParen True (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (showParen True . shows) vs) . (" -> "++) . shows t) vsts)
  }
};
instance Show IntTree where
{ showsPrec prec = \case
  { LfVar s -> showVar s
  ; Lf extra -> shows extra
  ; Nd x y -> showParen (1 <= prec)  $ shows x . (' ':) . showsPrec 1 y
  }
};
disasm (s, t) = (s++) . (" = "++) . shows t . (";\n"++);

dumpCombs s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), _) -> foldr ($) [] $ map disasm $ optiComb lambs
  };

dumpLambs s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), _) -> foldr ($) [] $
    (\(s, t) -> (s++) . (" = "++) . shows t . ('\n':)) <$> lambs
  };

dumpTypes s = case untangle s of
  { Left err -> err
  ; Right ((typed, _), _) -> ($ "") $ foldr (.) id $
    map (\(s, q) -> (s++) . (" :: "++) . shows q . ('\n':)) $ toAscList typed
  };

appCell (hp, bs) x y = (hp, (hp + 2, bs . (x:) . (y:)));

enc tab mem t = case t of
  { Lf n -> case n of
    { Basic c -> (comEnum c, mem)
    ; Const c -> appCell mem (comEnum "NUM") c
    ; ChrCon c -> appCell mem (comEnum "NUM") $ ord c
    ; StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
    }
  ; LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  ; Nd x y -> let
    { (xAddr, mem') = enc tab mem x
    ; (yAddr, mem'') = enc tab mem' y
    } in appCell mem'' xAddr yAddr
  };

asm combs = let
  { tabmem = foldl (\(as, m) (s, t) -> let { (p, m') = enc (fst tabmem) m t }
    in (insert s p as, m')) (Tip, (128, id)) combs } in tabmem;

-- Code generation.
genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_init();rts_reduce(" ++ shows n ");return 0;}\n";

compile s = case untangle s of
  { Left err -> err
  ; Right ((_, lambs), (ffis, exs)) -> let
    { (tab, (_, memF)) = asm $ optiComb lambs
    ; mem = memF []
    } in ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> shows n . (',':)) mem)
    . ("};\nstatic const u prog_size="++) . shows (length mem) . (";\n"++)
    . ("static u root[]={" ++)
    . foldr (\(x, y) f -> maybe undefined shows (mlookup y tab) . (", " ++) . f) id exs
    . ("0};\n" ++)
    . (preamble++)
    . (concatMap ffiDeclare ffis ++)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . ffiDefine (length ffis - 1) ffis
    . ("\n  }\n}\n" ++)
    . runFun
    . (foldr (.) id $ zipWith (\p n -> (("EXPORT(f" ++ shows n ", \"" ++ fst p ++ "\", " ++ shows n ")\n") ++)) exs (upFrom 0))
    $ maybe "" genMain (mlookup "main" tab)
  };

getArg' k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> getArg' (k + 1) n;
getArgs = getArgCount >>= \n -> mapM (getArg' 0) (take (n - 1) $ upFrom 1);

-- Main VM loop.
comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
I x = "sp[1] = arg(1); sp++;"
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
DIV x y = "_NUM" "num(1) / num(2)"
MOD x y = "_NUM" "num(1) % num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
|];

comb = (,) <$> conId <*> ((,) <$> many varId <*> (res "=" *> combExpr));
combExpr = foldl1 A <$> some
  (V <$> varId <|> E . StrCon <$> lexeme tokStr <|> paren combExpr);
comdefs = case parse (lexemePrelude *> braceSep comb <* eof) comdefsrc of
{ Left e -> error e
; Right (cs, _) -> cs
};
comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) (upFrom 1);
comName i = maybe undefined id $ lookup i $ zip (upFrom 1) (fst <$> comdefs);

preamble = [r|#define EXPORT(f, sym, n) void f() asm(sym) __attribute__((export_name(sym))); void f(){rts_reduce(root[n]);}
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = sp;
  u *tmp = mem;
  mem = altmem;
  altmem = tmp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}

static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
|];

runFun = ([r|static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < prog_size; i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)
  ;

genArg m a = case a of
  { V s -> ("arg("++) . (maybe undefined shows $ lookup s m) . (')':)
  ; E (StrCon s) -> (s++)
  ; A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
  };
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as;
genComb (s, (args, body)) = let
  { argc = ('(':) . shows (length args)
  ; m = zip args $ upFrom 1
  } in ("case _"++) . (s++) . (':':) . (case body of
  { A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
  ; A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
  ; E (StrCon s) -> (s++)
  }) . ("break;\n"++)
  ;

main = getArgs >>= \case
  { "comb":_ -> interact dumpCombs
  ; "lamb":_ -> interact dumpLambs
  ; "type":_ -> interact dumpTypes
  ; _ -> interact compile
  };

Methodically

We correct a glaring defect. Up until now, the methods of an instance must be defined in the same order they are declared in their class, otherwise bad code is silently produced.

We add support for default methods as it involves the same code. Our simple approach insists the type of the default implementation of a method in a class Foo to have the constraint of the form Foo a =>, because we always pass a dictionary as the first argument. We could improve this slightly by inserting const in the syntax tree if we deduce no constraints are present.

We ruthlessly remove semicolons and braces from our source.

Now that the syntax is slightly more pleasant:

  • We refine leftyPat so it correctly handles the wild-card pattern _ in the left-hand side of a definition.

  • We support ranges, except for those that specify a step size.

  • We support list comprehensions.

We prepare to change getChar to match Haskell’s, which throws an exception on end of input. Up until now, ours simply calls the getchar function of C, which returns -1 on end of input. Also, we would like Haskell’s isEOF so we can avoid this exception.

This takes two steps. The current compiler, whose RTS was generated by the previous compiler, must use the getChar and isEOF of the previous compiler. The most we can do is have it generate a new RTS supporting the new getChar and isEOF. Programs compiled by this compiler will use these. Our next compiler is one such program.

Complications arise because C’s feof(stdin) only reports the end of input after getChar has attempted to read past it and returned -1, while Haskell’s more clairvoyant version returns True before getChar would throw an error because of the end of input. Additionally, our primitive FFI mechanism has no way to convert a C int to Bool.

We write wrappers to get getChar and isEOF with the desired behaviour, and add them to the C source to the runtime in the RTS module. Thus our next compiler will print the new runtime in its output. However, it is unable to use any new runtime features itself; only the programs it builds can do that.

If an FFI call encounters an error, instead of unceremoniously calling exit(), we ought to push an exception-handling combinator on the stack. With this in mind, I experimented with setting a global flag on failure to trigger exception handling, but it caused a massive performance hit. Compiler build times went up from around 7 seconds to 10 seconds on my laptop, mostly caused by checking the flag for every getChar, isEOF, and putChar call. The compiler source is about 70000 characters, and the output is about 200000 characters. Each input byte needs one isEOF and one getChar call, and each output byte needs one putChar call, which suggests we’re eating close to 10 extra microseconds per check.

I tried removing the flag and reordering foreign function calls so that they occur after the stack has been primed to return results; this way, the foreign call wrapper can simply push an exception combinator on the stack on error. But I ran into a smaller but still significant performance hit. Even without conditional branching in the happy path, the reordering is evidently enough to mess up C compiler optimizations.

We can work around this problem with a better getContents implementation, and indeed, perhaps this would already improve current build times. For now we’ll just put up with exit() instead of exceptions.

-- Default class methods.
-- Accept instance methods in any order.
infixr 9 .
infixl 7 * , `div` , `mod`
infixl 6 + , -
infixr 5 ++
infixl 4 <*> , <$> , <* , *>
infix 4 == , /= , <=
infixl 3 && , <|>
infixl 2 ||
infixl 1 >> , >>=
infixr 0 $

foreign import ccall "putchar" putChar :: Int -> IO Int
foreign import ccall "getchar" getChar :: IO Int
foreign import ccall "getargcount" getArgCount :: IO Int
foreign import ccall "getargchar" getArgChar :: Int -> Int -> IO Char

libc = [r|#include<stdio.h>
static int env_argc;
int getargcount() { return env_argc; }
static char **env_argv;
int getargchar(int n, int k) { return env_argv[n][k]; }
static int nextCh, isAhead;
int eof_shim() {
  if (!isAhead) {
    isAhead = 1;
    nextCh = getchar();
  }
  return nextCh == -1;
}
void exit(int);
void putchar_shim(int c) { putchar(c); }
int getchar_shim() {
  if (!isAhead) nextCh = getchar();
  if (nextCh == -1) exit(1);
  isAhead = 0;
  return nextCh;
}
void errchar(int c) { fputc(c, stderr); }
void errexit() { fputc('\n', stderr); }
|]

class Functor f where fmap :: (a -> b) -> f a -> f b
class Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b
class Monad m where
  return :: a -> m a
  (>>=) :: m a -> (a -> m b) -> m b
(<$>) = fmap
liftA2 f x y = f <$> x <*> y
(>>) f g = f >>= \_ -> g
class Eq a where (==) :: a -> a -> Bool
instance Eq Int where (==) = intEq
instance Eq Char where (==) = charEq
($) f x = f x
id x = x
const x y = x
flip f x y = f y x
(&) x f = f x
class Ord a where (<=) :: a -> a -> Bool
compare x y = if x <= y then if y <= x then EQ else LT else GT
instance Ord Int where (<=) = intLE
instance Ord Char where (<=) = charLE
data Ordering = LT | GT | EQ
instance Ord a => Ord [a] where
  xs <= ys = case xs of
    [] -> True
    x:xt -> case ys of
      [] -> False
      y:yt -> case compare x y of
        LT -> True
        GT -> False
        EQ -> xt <= yt
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
fst (x, y) = x
snd (x, y) = y
uncurry f (x, y) = f x y
first f (x, y) = (f x, y)
second f (x, y) = (x, f y)
not a = if a then False else True
x /= y = not $ x == y
(.) f g x = f (g x)
(||) f g = if f then True else g
(&&) f g = if f then g else False
instance Eq a => Eq [a] where
  xs == ys = case xs of
    [] -> case ys of
      [] -> True
      _ -> False
    x:xt -> case ys of
      [] -> False
      y:yt -> x == y && xt == yt
take 0 xs = []
take _ [] = []
take n (h:t) = h : take (n - 1) t
maybe n j m = case m of Nothing -> n; Just x -> j x
instance Functor Maybe where fmap f = maybe Nothing (Just . f)
instance Applicative Maybe where pure = Just ; mf <*> mx = maybe Nothing (\f -> maybe Nothing (Just . f) mx) mf
instance Monad Maybe where return = Just ; mf >>= mg = maybe Nothing mg mf
instance Alternative Maybe where empty = Nothing ; x <|> y = maybe y Just x
foldr c n = \case [] -> n; h:t -> c h $ foldr c n t
length = foldr (\_ n -> n + 1) 0
mapM f = foldr (\a rest -> liftA2 (:) (f a) rest) (pure [])
mapM_ f = foldr ((>>) . f) (pure ())
foldM f z0 xs = foldr (\x k z -> f z x >>= k) pure xs z0
instance Applicative IO where pure = ioPure ; (<*>) f x = ioBind f \g -> ioBind x \y -> ioPure (g y)
instance Monad IO where return = ioPure ; (>>=) = ioBind
instance Functor IO where fmap f x = ioPure f <*> x
class Show a where showsPrec :: Int -> a -> String -> String
shows = showsPrec 0
show x = shows x ""
showInt__ n
  | 0 == n = id
  | True = showInt__ (n`div`10) . (chr (48+n`mod`10):)
instance Show Int where
  showsPrec _ n
    | 0 == n = ('0':)
    | 1 <= n = showInt__ n
    | 2 * n == 0 = ("-2147483648"++)
    | True = ('-':) . showInt__ (0 - n)
putStr = mapM_ $ putChar . ord
getContents = getChar >>= \n -> if 0 <= n then (chr n:) <$> getContents else pure []
interact f = getContents >>= putStr . f
error s = unsafePerformIO $ putStr s >> putChar (ord '\n') >> exitSuccess
undefined = error "undefined"
foldr1 c l@(h:t) = maybe undefined id $ foldr (\x m -> Just $ maybe x (c x) m) Nothing l
foldl f a bs = foldr (\b g x -> g (f x b)) (\x -> x) bs a
foldl1 f (h:t) = foldl f h t
elem k xs = foldr (\x t -> x == k || t) False xs
find f xs = foldr (\x t -> if f x then Just x else t) Nothing xs
(++) = flip (foldr (:))
concat = foldr (++) []
map = flip (foldr . ((:) .)) []
head (h:_) = h
tail (_:t) = t
isSpace c = elem (ord c) [32, 9, 10, 11, 12, 13, 160]
instance Functor [] where fmap = map
concatMap = (concat .) . map
lookup s = foldr (\(k, v) t -> if s == k then Just v else t) Nothing
filter f = foldr (\x xs -> if f x then x:xs else xs) []
union xs ys = foldr (\y acc -> (if elem y acc then id else (y:)) acc) xs ys
intersect xs ys = filter (\x -> maybe False (\_ -> True) $ find (x ==) ys) xs
last (x:xt) = go x xt where go x xt = case xt of [] -> x; y:yt -> go y yt
init (x:xt) = case xt of [] -> []; _ -> x : init xt
intercalate sep = \case [] -> []; x:xt -> x ++ concatMap (sep ++) xt
intersperse sep = \case [] -> []; x:xt -> x : foldr ($) [] (((sep:) .) . (:) <$> xt)
all f = foldr (&&) True . map f
any f = foldr (||) False . map f
and = foldr (&&) True
or = foldr (||) False
upFrom n = n : upFrom (n + 1)
zipWith f xs ys = case xs of [] -> []; x:xt -> case ys of [] -> []; y:yt -> f x y : zipWith f xt yt
zip = zipWith (,)
data State s a = State (s -> (a, s))
runState (State f) = f
instance Functor (State s) where fmap f = \(State h) -> State (first f . h)
instance Applicative (State s) where
  pure a = State (a,)
  (State f) <*> (State x) = State \s -> case f s of (g, s') -> first g $ x s'
instance Monad (State s) where
  return a = State (a,)
  (State h) >>= f = State $ uncurry (runState . f) . h
evalState m s = fst $ runState m s
get = State \s -> (s, s)
put n = State \s -> ((), n)
either l r e = case e of Left x -> l x; Right x -> r x
instance Functor (Either a) where fmap f e = either Left (Right . f) e
instance Applicative (Either a) where
  pure = Right
  ef <*> ex = case ef of
    Left s -> Left s
    Right f -> either Left (Right . f) ex
instance Monad (Either a) where
  return = Right
  ex >>= f = either Left f ex
class Alternative f where
  empty :: f a
  (<|>) :: f a -> f a -> f a
asum = foldr (<|>) empty
(*>) = liftA2 \x y -> y
(<*) = liftA2 \x y -> x
many p = liftA2 (:) p (many p) <|> pure []
some p = liftA2 (:) p (many p)
sepBy1 p sep = liftA2 (:) p (many (sep *> p))
sepBy p sep = sepBy1 p sep <|> pure []
between x y p = x *> (p <* y)

-- Map.
data Map k a = Tip | Bin Int k a (Map k a) (Map k a)
size m = case m of Tip -> 0 ; Bin sz _ _ _ _ -> sz
node k x l r = Bin (1 + size l + size r) k x l r
singleton k x = Bin 1 k x Tip Tip
singleL k x l (Bin _ rk rkx rl rr) = node rk rkx (node k x l rl) rr
doubleL k x l (Bin _ rk rkx (Bin _ rlk rlkx rll rlr) rr) =
  node rlk rlkx (node k x l rll) (node rk rkx rlr rr)
singleR k x (Bin _ lk lkx ll lr) r = node lk lkx ll (node k x lr r)
doubleR k x (Bin _ lk lkx ll (Bin _ lrk lrkx lrl lrr)) r =
  node lrk lrkx (node lk lkx ll lrl) (node k x lrr r)
balance k x l r = f k x l r where
  f | size l + size r <= 1 = node
    | 5 * size l + 3 <= 2 * size r = case r of
      Tip -> node
      Bin sz _ _ rl rr -> if 2 * size rl + 1 <= 3 * size rr
        then singleL
        else doubleL
    | 5 * size r + 3 <= 2 * size l = case l of
      Tip -> node
      Bin sz _ _ ll lr -> if 2 * size lr + 1 <= 3 * size ll
        then singleR
        else doubleR
    | True = node
insert kx x t = case t of
  Tip -> singleton kx x
  Bin sz ky y l r -> case compare kx ky of
    LT -> balance ky y (insert kx x l) r
    GT -> balance ky y l (insert kx x r)
    EQ -> Bin sz kx x l r
insertWith f kx x t = case t of
  Tip -> singleton kx x
  Bin sy ky y l r -> case compare kx ky of
    LT -> balance ky y (insertWith f kx x l) r
    GT -> balance ky y l (insertWith f kx x r)
    EQ -> Bin sy kx (f x y) l r
mlookup kx t = case t of
  Tip -> Nothing
  Bin _ ky y l r -> case compare kx ky of
    LT -> mlookup kx l
    GT -> mlookup kx r
    EQ -> Just y
fromList = foldl (\t (k, x) -> insert k x t) Tip
member k t = maybe False (const True) $ mlookup k t
t ! k = maybe undefined id $ mlookup k t

foldrWithKey f = go where
  go z t = case t of
    Tip -> z
    Bin _ kx x l r -> go (f kx x (go z r)) l

toAscList = foldrWithKey (\k x xs -> (k,x):xs) []

-- Syntax tree.
data Type = TC String | TV String | TAp Type Type
arr a b = TAp (TAp (TC "->") a) b
data Extra = Basic String | Const Int | ChrCon Char | StrCon String
data Pat = PatLit Ast | PatVar String (Maybe Pat) | PatCon String [Pat]
data Ast = E Extra | V String | A Ast Ast | L String Ast | Pa [([Pat], Ast)] | Proof Pred
data Constr = Constr String [Type]
data Pred = Pred String Type
data Qual = Qual [Pred] Type
noQual = Qual []

instance Eq Type where
  (TC s) == (TC t) = s == t
  (TV s) == (TV t) = s == t
  (TAp a b) == (TAp c d) = a == c && b == d
  _ == _ = False

instance Eq Pred where (Pred s a) == (Pred t b) = s == t && a == b

data Instance = Instance
  -- Type, e.g. Int for Eq Int.
  Type
  -- Dictionary name, e.g. "{Eq Int}"
  String
  -- Context.
  [Pred]
  -- Method definitions
  (Map String Ast)

data Tycl = Tycl [String] [Instance]

data Neat = Neat
  (Map String Tycl)
  -- | Top-level definitions
  [(String, Ast)]
  -- | Typed ASTs, ready for compilation, including ADTs and methods,
  -- e.g. (==), (Eq a => a -> a -> Bool, select-==)
  [(String, (Qual, Ast))]
  -- | Data constructor table.
  (Map String [Constr])
  -- | FFI declarations.
  [(String, Type)]
  -- | Exports.
  [(String, String)]

patVars = \case
  PatLit _ -> []
  PatVar s m -> s : maybe [] patVars m
  PatCon _ args -> concat $ patVars <$> args

fv bound = \case
  V s | not (elem s bound) -> [s]
  A x y -> fv bound x `union` fv bound y
  L s t -> fv (s:bound) t
  _ -> []

fvPro bound expr = case expr of
  V s | not (elem s bound) -> [s]
  A x y -> fvPro bound x `union` fvPro bound y
  L s t -> fvPro (s:bound) t
  Pa vsts -> foldr union [] $ map (\(vs, t) -> fvPro (concatMap patVars vs ++ bound) t) vsts
  _ -> []

overFree s f t = case t of
  E _ -> t
  V s' -> if s == s' then f t else t
  A x y -> A (overFree s f x) (overFree s f y)
  L s' t' -> if s == s' then t else L s' $ overFree s f t'

overFreePro s f t = case t of
  E _ -> t
  V s' -> if s == s' then f t else t
  A x y -> A (overFreePro s f x) (overFreePro s f y)
  L s' t' -> if s == s' then t else L s' $ overFreePro s f t'
  Pa vsts -> Pa $ map (\(vs, t) -> (vs, if any (elem s . patVars) vs then t else overFreePro s f t)) vsts

beta s t x = overFree s (const t) x

showParen b f = if b then ('(':) . f . (')':) else f

-- Parser.
data ParserState = ParserState
  [(Char, (Int, Int))]
  String
  [Int]
  (Map String (Int, Assoc))

readme  (ParserState x _ _ _) = x
landin  (ParserState _ x _ _) = x
indents (ParserState _ _ x _) = x
precs   (ParserState _ _ _ x) = x
putReadme  x (ParserState _ a b c) = ParserState x a b c
putLandin  x (ParserState a _ b c) = ParserState a x b c
modIndents f (ParserState a b x c) = ParserState a b (f x) c
data Parser a = Parser (ParserState -> Either String (a, ParserState))
getParser (Parser p) = p
instance Functor Parser where fmap f x = pure f <*> x
instance Applicative Parser where
  pure x = Parser \inp -> Right (x, inp)
  (Parser f) <*> (Parser x) = Parser \inp -> do
    (fun, t) <- f inp
    (arg, u) <- x t
    pure (fun arg, u)
instance Monad Parser where
  return = pure
  (Parser x) >>= f = Parser \inp -> do
    (a, t) <- x inp
    getParser (f a) t
instance Alternative Parser where
  empty = bad ""
  x <|> y = Parser \inp -> either (const $ getParser y inp) Right $ getParser x inp
getPrecs = Parser \st -> Right (precs st, st)
putPrecs ps = Parser \(ParserState a b c _) -> Right ((), ParserState a b c ps)

notFollowedBy p = do
  saved <- Parser \pasta -> Right (pasta, pasta)
  ret <- p *> pure (bad "") <|> pure (pure ())
  Parser \_ -> Right ((), saved)
  ret

parse f str = getParser f $ ParserState (rowcol str (1, 1)) [] [] $ singleton ":" (5, RAssoc) where
  rowcol s rc = case s of
    [] -> []
    h:t -> (h, rc) : rowcol t (advanceRC (ord h) rc)
  advanceRC n (r, c)
    | n `elem` [10, 11, 12, 13] = (r + 1, 1)
    | n == 9 = (r, (c + 8)`mod`8)
    | True = (r, c + 1)

indentOf pasta = case readme pasta of
  [] -> 1
  (_, (_, c)):_ -> c

ins c pasta = putLandin (c:landin pasta) pasta

angle n pasta = case indents pasta of
  m:ms | m == n -> ins ';' pasta
       | n + 1 <= m -> ins '}' $ angle n $ modIndents tail pasta
  _ -> pasta

curly n pasta = case indents pasta of
  m:ms | m + 1 <= n -> ins '{' $ modIndents (n:) pasta
  [] | 1 <= n -> ins '{' $ modIndents (n:) pasta
  _ -> ins '{' . ins '}' $ angle n pasta

sat f = Parser \pasta -> case landin pasta of
  c:t -> if f c then Right (c, putLandin t pasta) else Left "unsat"
  [] -> case readme pasta of
    [] -> case indents pasta of
      [] -> Left "EOF"
      m:ms | m /= 0 && f '}' -> Right ('}', modIndents tail pasta)
      _ -> Left "unsat"
    (h, _):t | f h -> let
      p' = putReadme t pasta
      in case h of
        '}' -> case indents pasta of
          0:ms -> Right (h, modIndents tail p')
          _ -> Left "unsat"
        '{' -> Right (h, modIndents (0:) p')
        _ -> Right (h, p')
    _ -> Left "unsat"

char c = sat (c ==)

rawSat f = Parser \pasta -> case readme pasta of
  [] -> Left "EOF"
  (h, _):t -> if f h then Right (h, putReadme t pasta) else Left "unsat"

eof = Parser \pasta -> case pasta of
  ParserState [] [] _ _ -> Right ((), pasta)
  _ -> badpos pasta "want eof"

comment = rawSat ('-' ==) *> some (rawSat ('-' ==)) *>
  (rawSat isNewline <|> rawSat (not . isSymbol) *> many (rawSat $ not . isNewline) *> rawSat isNewline) *> pure True
spaces = isNewline <$> rawSat isSpace
whitespace = do
  offside <- or <$> many (spaces <|> comment)
  Parser \pasta -> Right ((), if offside then angle (indentOf pasta) pasta else pasta)

hexValue d
  | d <= '9' = ord d - ord '0'
  | d <= 'F' = 10 + ord d - ord 'A'
  | d <= 'f' = 10 + ord d - ord 'a'
isNewline c = ord c `elem` [10, 11, 12, 13]
isSymbol = (`elem` "!#$%&*+./<=>?@\\^|-~:")
isSmall c = c <= 'z' && 'a' <= c || c == '_'
small = sat isSmall
large = sat \x -> (x <= 'Z') && ('A' <= x)
hexit = sat \x -> (x <= '9') && ('0' <= x)
  || (x <= 'F') && ('A' <= x)
  || (x <= 'f') && ('a' <= x)
digit = sat \x -> (x <= '9') && ('0' <= x)
decimal = foldl (\n d -> 10*n + ord d - ord '0') 0 <$> some digit
hexadecimal = foldl (\n d -> 16*n + hexValue d) 0 <$> some hexit
nameTailChar = small <|> large <|> digit <|> char '\''
nameTailed p = liftA2 (:) p $ many nameTailChar

escape = char '\\' *> (sat (`elem` "'\"\\") <|> char 'n' *> pure '\n' <|> char '0' *> pure (chr 0) <|> char 'x' *> (chr <$> hexadecimal))
tokOne delim = escape <|> rawSat (delim /=)

charSeq = mapM char
tokChar = between (char '\'') (char '\'') (tokOne '\'')
quoteStr = between (char '"') (char '"') $ many $ many (charSeq "\\&") *> tokOne '"'
quasiquoteStr = charSeq "[r|" *> quasiquoteBody
quasiquoteBody = charSeq "|]" *> pure [] <|> (:) <$> rawSat (const True) <*> quasiquoteBody
tokStr = quoteStr <|> quasiquoteStr
integer = char '0' *> (char 'x' <|> char 'X') *> hexadecimal <|> decimal
literal = lexeme . fmap E $ Const <$> integer <|> ChrCon <$> tokChar <|> StrCon <$> tokStr
varish = lexeme $ nameTailed small
bad s = Parser \pasta -> badpos pasta s
badpos pasta s = Left $ loc $ ": " ++ s where
  loc = case readme pasta of
    [] -> ("EOF"++)
    (_, (r, c)):_ -> ("row "++) . shows r . (" col "++) . shows c
varId = do
  s <- varish
  if elem s
    ["export", "case", "class", "data", "default", "deriving", "do", "else", "foreign", "if", "import", "in", "infix", "infixl", "infixr", "instance", "let", "module", "newtype", "of", "then", "type", "where", "_"]
    then bad $ "reserved: " ++ s else pure s
varSymish = lexeme $ (:) <$> sat (\c -> isSymbol c && c /= ':') <*> many (sat isSymbol)
varSym = lexeme $ do
  s <- varSymish
  if elem s ["..", "=", "\\", "|", "<-", "->", "@", "~", "=>"] then bad $ "reserved: " ++ s else pure s

conId = lexeme $ nameTailed large
conSymish = lexeme $ liftA2 (:) (char ':') $ many $ sat isSymbol
conSym = do
  s <- conSymish
  if elem s [":", "::"] then bad $ "reserved: " ++ s else pure s
special c = lexeme $ sat (c ==)
comma = special ','
semicolon = special ';'
lParen = special '('
rParen = special ')'
lBrace = special '{'
rBrace = special '}'
lSquare = special '['
rSquare = special ']'
backquote = special '`'

lexeme f = f <* whitespace

lexemePrelude = whitespace *>
  Parser \pasta -> case getParser (res "module" <|> (:[]) <$> char '{') pasta of
    Left _ -> Right ((), curly (indentOf pasta) pasta)
    Right _ -> Right ((), pasta)

curlyCheck f = do
  Parser \pasta -> Right ((), modIndents (0:) pasta)
  r <- f
  Parser \pasta -> let pasta' = modIndents tail pasta in case readme pasta of
    []              -> Right ((), curly 0 pasta')
    ('{', _):_      -> Right ((), pasta')
    (_, (_, col)):_ -> Right ((), curly col pasta')
  pure r

ro = E . Basic
conOf (Constr s _) = s
specialCase (h:_) = '|':conOf h
mkCase t cs = (specialCase cs,
  ( noQual $ arr t $ foldr arr (TV "case") $ map (\(Constr _ ts) -> foldr arr (TV "case") ts) cs
  , ro "I"))
mkStrs = snd . foldl (\(s, l) u -> ('@':s, s:l)) ("@", [])
scottEncode _ ":" _ = ro "CONS"
scottEncode vs s ts = foldr L (foldl (\a b -> A a (V b)) (V s) ts) (ts ++ vs)
scottConstr t cs (Constr s ts) = (s,
  (noQual $ foldr arr t ts , scottEncode (map conOf cs) s $ mkStrs ts))
mkAdtDefs t cs = mkCase t cs : map (scottConstr t cs) cs

mkFFIHelper n t acc = case t of
  TC s -> acc
  TAp (TC "IO") _ -> acc
  TAp (TAp (TC "->") x) y -> L (show n) $ mkFFIHelper (n + 1) y $ A (V $ show n) acc

updateDcs cs dcs = foldr (\(Constr s _) m -> insert s cs m) dcs cs
addAdt t cs (Neat tycl fs typed dcs ffis exs) =
  Neat tycl fs (mkAdtDefs t cs ++ typed) (updateDcs cs dcs) ffis exs

emptyTycl = Tycl [] []
addClass classId v (sigs, defs) (Neat tycl fs typed dcs ffis ffes) = let
  vars = take (size sigs) $ show <$> upFrom 0
  selectors = zipWith (\var (s, t) -> (s, (Qual [Pred classId v] t,
    L "@" $ A (V "@") $ foldr L (V var) vars))) vars $ toAscList sigs
  defaults = map (\(s, t) -> if member s sigs then ("{default}" ++ s, t) else error $ "bad default method: " ++ s) $ toAscList defs
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl (fst <$> toAscList sigs) is) tycl
  in Neat tycl' (defaults ++ fs) (selectors ++ typed) dcs ffis ffes

addInstance classId ps ty ds (Neat tycl fs typed dcs ffis exs) = let
  Tycl ms is = maybe emptyTycl id $ mlookup classId tycl
  tycl' = insert classId (Tycl ms $ Instance ty name ps (fromList ds):is) tycl
  name = '{':classId ++ (' ':shows ty "}")
  in Neat tycl' fs typed dcs ffis exs

addFFI foreignname ourname t (Neat tycl fs typed dcs ffis exs) = let
  fn = A (ro "F") $ E $ Const $ length ffis
  in Neat tycl fs ((ourname, (Qual [] t, mkFFIHelper 0 t fn)) : typed) dcs ((foreignname, t):ffis) exs
addDefs ds (Neat tycl fs typed dcs ffis exs) = Neat tycl (ds ++ fs) typed dcs ffis exs
addExport e f (Neat tycl fs typed dcs ffis exs) = Neat tycl fs typed dcs ffis ((e, f):exs)

parseErrorRule = Parser \pasta -> case indents pasta of
  m:ms | m /= 0 -> Right ('}', modIndents tail pasta)
  _ -> badpos pasta "missing }"

res w@(h:_) = reservedSeq *> pure w <|> bad ("want \"" ++ w ++ "\"") where
  reservedSeq = if elem w ["let", "where", "do", "of"]
    then curlyCheck $ lexeme $ charSeq w *> notFollowedBy nameTailChar
    else lexeme $ charSeq w *> notFollowedBy (if isSmall h then nameTailChar else sat isSymbol)

paren = between lParen rParen
braceSep f = between lBrace (rBrace <|> parseErrorRule) $ foldr ($) [] <$> sepBy ((:) <$> f <|> pure id) semicolon

maybeFix s x = if elem s $ fvPro [] x then A (V "fix") (L s x) else x

nonemptyTails [] = []
nonemptyTails xs@(x:xt) = xs : nonemptyTails xt

joinIsFail t = A (L "join#" t) (V "fail#")

addLets ls x = foldr triangle x components where
  vs = fst <$> ls
  ios = foldr (\(s, dsts) (ins, outs) ->
    (foldr (\dst -> insertWith union dst [s]) ins dsts, insertWith union s dsts outs))
    (Tip, Tip) $ map (\(s, t) -> (s, intersect (fvPro [] t) vs)) ls
  components = scc (\k -> maybe [] id $ mlookup k $ fst ios) (\k -> maybe [] id $ mlookup k $ snd ios) vs
  triangle names expr = let
    tnames = nonemptyTails names
    suball t = foldr (\(x:xt) t -> overFreePro x (const $ foldl (\acc s -> A acc (V s)) (V x) xt) t) t tnames
    insLams vs t = foldr L t vs
    in foldr (\(x:xt) t -> A (L x t) $ maybeFix x $ insLams xt $ suball $ maybe undefined joinIsFail $ lookup x ls) (suball expr) tnames

data Assoc = NAssoc | LAssoc | RAssoc
instance Eq Assoc where
  NAssoc == NAssoc = True
  LAssoc == LAssoc = True
  RAssoc == RAssoc = True
  _ == _ = False
precOf s precTab = maybe 9 fst $ mlookup s precTab
assocOf s precTab = maybe LAssoc snd $ mlookup s precTab

opFold precTab f x xs = case xs of
  [] -> pure x
  (op, y):xt -> case find (\(op', _) -> assocOf op precTab /= assocOf op' precTab) xt of
    Nothing -> case assocOf op precTab of
      NAssoc -> case xt of
        [] -> pure $ f op x y
        y:yt -> bad "NAssoc repeat"
      LAssoc -> pure $ foldl (\a (op, y) -> f op a y) x xs
      RAssoc -> pure $ foldr (\(op, y) b -> \e -> f op e (b y)) id xs $ x
    Just y -> bad "Assoc clash"

qconop = conSym <|> res ":" <|> between backquote backquote conId

qconsym = conSym <|> res ":"

op = qconsym <|> varSym <|> between backquote backquote (conId <|> varId)
con = conId <|> paren qconsym
var = varId <|> paren varSym

tycon = do
  s <- conId
  pure $ if s == "String" then TAp (TC "[]") (TC "Char") else TC s

aType =
  lParen *>
    (   rParen *> pure (TC "()")
    <|> (foldr1 (TAp . TAp (TC ",")) <$> sepBy1 _type comma) <* rParen)
  <|> tycon
  <|> TV <$> varId
  <|> (lSquare *> (rSquare *> pure (TC "[]") <|> TAp (TC "[]") <$> (_type <* rSquare)))
bType = foldl1 TAp <$> some aType
_type = foldr1 arr <$> sepBy bType (res "->")

fixityDecl w a = do
  res w
  n <- lexeme integer
  os <- sepBy op comma
  precs <- getPrecs
  putPrecs $ foldr (\o m -> insert o (n, a) m) precs os
fixity = fixityDecl "infix" NAssoc <|> fixityDecl "infixl" LAssoc <|> fixityDecl "infixr" RAssoc

cDecls = first fromList . second fromList . foldr ($) ([], []) <$> braceSep cDecl
cDecl = first . (:) <$> genDecl <|> second . (++) <$> defSemi

genDecl = (,) <$> var <*> (res "::" *> _type)

classDecl = res "class" *> (addClass <$> conId <*> (TV <$> varId) <*> (res "where" *> cDecls))

simpleClass = Pred <$> conId <*> _type
scontext = (:[]) <$> simpleClass <|> paren (sepBy simpleClass comma)

instDecl = res "instance" *>
  ((\ps cl ty defs -> addInstance cl ps ty defs) <$>
  (scontext <* res "=>" <|> pure [])
    <*> conId <*> _type <*> (res "where" *> braceDef))

letin = addLets <$> between (res "let") (res "in") braceDef <*> expr
ifthenelse = (\a b c -> A (A (A (V "if") a) b) c) <$>
  (res "if" *> expr) <*> (res "then" *> expr) <*> (res "else" *> expr)
listify = foldr (\h t -> A (A (V ":") h) t) (V "[]")

alts = joinIsFail . Pa <$> braceSep ((\x y -> ([x], y)) <$> pat <*> guards "->")
cas = flip A <$> between (res "case") (res "of") expr <*> alts
lamCase = curlyCheck (res "case") *> alts
lam = res "\\" *> (lamCase <|> liftA2 onePat (some apat) (res "->" *> expr))

flipPairize y x = A (A (V ",") x) y
moreCommas = foldr1 (A . A (V ",")) <$> sepBy1 expr comma
thenComma = comma *> ((flipPairize <$> moreCommas) <|> pure (A (V ",")))
parenExpr = (&) <$> expr <*> (((\v a -> A (V v) a) <$> op) <|> thenComma <|> pure id)
rightSect = ((\v a -> L "@" $ A (A (V v) $ V "@") a) <$> (op <|> (:"") <$> comma)) <*> expr
section = lParen *> (parenExpr <* rParen <|> rightSect <* rParen <|> rParen *> pure (V "()"))

maybePureUnit = maybe (V "pure" `A` V "()") id
stmt = (\p x -> Just . A (V ">>=" `A` x) . onePat [p] . maybePureUnit) <$> pat <*> (res "<-" *> expr)
  <|> (\x -> Just . maybe x (\y -> (V ">>=" `A` x) `A` (L "_" y))) <$> expr
  <|> (\ds -> Just . addLets ds . maybePureUnit) <$> (res "let" *> braceDef)
doblock = res "do" *> (maybePureUnit . foldr ($) Nothing <$> braceSep stmt)

compQual =
  (\p xs e -> A (A (V "concatMap") $ onePat [p] e) xs)
    <$> pat <*> (res "<-" *> expr)
  <|> (\b e -> A (A (A (V "if") b) e) $ V "[]") <$> expr
  <|> addLets <$> (res "let" *> braceDef)

sqExpr = between lSquare rSquare $
  ((&) <$> expr <*>
    (   res ".." *>
      (   (\hi lo -> (A (A (V "enumFromTo") lo) hi)) <$> expr
      <|> pure (A (V "enumFrom"))
      )
    <|> res "|" *>
      ((. A (V "pure")) . foldr (.) id <$> sepBy1 compQual comma)
    <|> (\t h -> listify (h:t)) <$> many (comma *> expr)
    )
  )
  <|> pure (V "[]")

atom = ifthenelse <|> doblock <|> letin <|> sqExpr <|> section
  <|> cas <|> lam <|> (paren comma *> pure (V ","))
  <|> V <$> (con <|> var) <|> literal

aexp = foldl1 A <$> some atom

withPrec precTab n p = p >>= \s ->
  if n == precOf s precTab then pure s else Parser $ const $ Left ""

exprP n = if n <= 9
  then getPrecs >>= \precTab
    -> exprP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n op <*> exprP (succ n)) >>= \as
    -> opFold precTab (\op x y -> A (A (V op) x) y) a as
  else aexp
expr = exprP 0

gcon = conId <|> paren (qconsym <|> (:"") <$> comma) <|> (lSquare *> rSquare *> pure "[]")

apat = PatVar <$> var <*> (res "@" *> (Just <$> apat) <|> pure Nothing)
  <|> flip PatVar Nothing <$> (res "_" *> pure "_")
  <|> flip PatCon [] <$> gcon
  <|> PatLit <$> literal
  <|> foldr (\h t -> PatCon ":" [h, t]) (PatCon "[]" [])
    <$> between lSquare rSquare (sepBy pat comma)
  <|> paren (foldr1 pairPat <$> sepBy1 pat comma <|> pure (PatCon "()" []))
  where pairPat x y = PatCon "," [x, y]

binPat f x y = PatCon f [x, y]
patP n = if n <= 9
  then getPrecs >>= \precTab
    -> patP (succ n) >>= \a
    -> many ((,) <$> withPrec precTab n qconop <*> patP (succ n)) >>= \as
    -> opFold precTab binPat a as
  else PatCon <$> gcon <*> many apat <|> apat
pat = patP 0

maybeWhere p = (&) <$> p <*> (res "where" *> (addLets <$> braceDef) <|> pure id)

guards s = maybeWhere $ res s *> expr <|> foldr ($) (V "join#") <$> some ((\x y -> case x of
  V "True" -> \_ -> y
  _ -> A (A (A (V "if") x) y)
  ) <$> (res "|" *> expr) <*> (res s *> expr))

onePat vs x = joinIsFail $ Pa [(vs, x)]
defOnePat vs x = Pa [(vs, x)]
opDef x f y rhs = [(f, defOnePat [x, y] rhs)]
leftyPat p expr = case pvars of
  [] -> []
  (h:t) -> let gen = '@':h in
    (gen, expr):map (\v -> (v, A (Pa [([p], V v)]) $ V gen)) pvars
  where
  pvars = filter (/= "_") $ patVars p
def = liftA2 (\l r -> [(l, r)]) var (liftA2 defOnePat (many apat) $ guards "=")
  <|> (pat >>= \x -> opDef x <$> varSym <*> pat <*> guards "=" <|> leftyPat x <$> guards "=")
coalesce = \case
  [] -> []
  h@(s, x):t -> case t of
    [] -> [h]
    (s', x'):t' -> let
      f (Pa vsts) (Pa vsts') = Pa $ vsts ++ vsts'
      f _ _ = error "bad multidef"
      in if s == s' then coalesce $ (s, f x x'):t' else h:coalesce t
defSemi = coalesce . concat <$> sepBy1 def (some semicolon)
braceDef = concat <$> braceSep defSemi

simpleType c vs = foldl TAp (TC c) (map TV vs)
conop = conSym <|> between backquote backquote conId
constr = (\x c y -> Constr c [x, y]) <$> aType <*> conop <*> aType
  <|> Constr <$> conId <*> many aType
adt = addAdt <$> between (res "data") (res "=") (simpleType <$> conId <*> many varId) <*> sepBy constr (res "|")

topdecls = braceSep
  $   adt
  <|> classDecl
  <|> instDecl
  <|> res "foreign" *>
    (   res "import" *> var *> (addFFI <$> lexeme tokStr <*> var <*> (res "::" *> _type))
    <|> res "export" *> var *> (addExport <$> lexeme tokStr <*> var)
    )
  <|> addDefs <$> defSemi
  <|> fixity *> pure id

program s = parse (between lexemePrelude eof topdecls) s

-- Primitives.
primAdts =
  [ addAdt (TC "()") [Constr "()" []]
  , addAdt (TC "Bool") [Constr "True" [], Constr "False" []]
  , addAdt (TAp (TC "[]") (TV "a")) [Constr "[]" [], Constr ":" [TV "a", TAp (TC "[]") (TV "a")]]
  , addAdt (TAp (TAp (TC ",") (TV "a")) (TV "b")) [Constr "," [TV "a", TV "b"]]]

prims = let
  dyad s = TC s `arr` (TC s `arr` TC s)
  bin s = A (ro "Q") (ro s)
  in map (second (first noQual)) $
    [ ("intEq", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "EQ"))
    , ("intLE", (arr (TC "Int") (arr (TC "Int") (TC "Bool")), bin "LE"))
    , ("charEq", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "EQ"))
    , ("charLE", (arr (TC "Char") (arr (TC "Char") (TC "Bool")), bin "LE"))
    , ("fix", (arr (arr (TV "a") (TV "a")) (TV "a"), ro "Y"))
    , ("if", (arr (TC "Bool") $ arr (TV "a") $ arr (TV "a") (TV "a"), ro "I"))
    , ("chr", (arr (TC "Int") (TC "Char"), ro "I"))
    , ("ord", (arr (TC "Char") (TC "Int"), ro "I"))
    , ("ioBind", (arr (TAp (TC "IO") (TV "a")) (arr (arr (TV "a") (TAp (TC "IO") (TV "b"))) (TAp (TC "IO") (TV "b"))), ro "C"))
    , ("ioPure", (arr (TV "a") (TAp (TC "IO") (TV "a")), ro "V"))
    , ("newIORef", (arr (TV "a") (TAp (TC "IO") (TAp (TC "IORef") (TV "a"))), ro "NEWREF"))
    , ("readIORef", (arr (TAp (TC "IORef") (TV "a")) (TAp (TC "IO") (TV "a")),
      A (ro "T") (ro "READREF")))
    , ("writeIORef", (arr (TAp (TC "IORef") (TV "a")) (arr (TV "a") (TAp (TC "IO") (TC "()"))),
      A (A (ro "R") (ro "WRITEREF")) (ro "B")))
    , ("exitSuccess", (TAp (TC "IO") (TV "a"), ro "END"))
    , ("unsafePerformIO", (arr (TAp (TC "IO") (TV "a")) (TV "a"), A (A (ro "C") (A (ro "T") (ro "END"))) (ro "K")))
    , ("join#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    , ("fail#", (TV "a", A (V "unsafePerformIO") (V "exitSuccess")))
    ]
    ++ map (\(s, v) -> (s, (dyad "Int", bin v)))
      [ ("intAdd", "ADD")
      , ("intSub", "SUB")
      , ("intMul", "MUL")
      , ("intDiv", "DIV")
      , ("intMod", "MOD")
      , ("intQuot", "DIV")
      , ("intRem", "MOD")
      ]

-- Conversion to De Bruijn indices.
data LC = Ze | Su LC | Pass IntTree | La LC | App LC LC

debruijn n e = case e of
  E x -> Pass $ Lf x
  V v -> maybe (Pass $ LfVar v) id $
    foldr (\h found -> if h == v then Just Ze else Su <$> found) Nothing n
  A x y -> App (debruijn n x) (debruijn n y)
  L s t -> La (debruijn (s:n) t)

-- Kiselyov bracket abstraction.
data IntTree = Lf Extra | LfVar String | Nd IntTree IntTree
data Sem = Defer | Closed IntTree | Need Sem | Weak Sem

lf = Lf . Basic

ldef y = case y of
  Defer -> Need $ Closed (Nd (Nd (lf "S") (lf "I")) (lf "I"))
  Closed d -> Need $ Closed (Nd (lf "T") d)
  Need e -> Need $ (Closed (Nd (lf "S") (lf "I"))) ## e
  Weak e -> Need $ (Closed (lf "T")) ## e

lclo d y = case y of
  Defer -> Need $ Closed d
  Closed dd -> Closed $ Nd d dd
  Need e -> Need $ (Closed (Nd (lf "B") d)) ## e
  Weak e -> Weak $ (Closed d) ## e

lnee e y = case y of
  Defer -> Need $ Closed (lf "S") ## e ## Closed (lf "I")
  Closed d -> Need $ Closed (Nd (lf "R") d) ## e
  Need ee -> Need $ Closed (lf "S") ## e ## ee
  Weak ee -> Need $ Closed (lf "C") ## e ## ee

lwea e y = case y of
  Defer -> Need e
  Closed d -> Weak $ e ## Closed d
  Need ee -> Need $ (Closed (lf "B")) ## e ## ee
  Weak ee -> Weak $ e ## ee

x ## y = case x of
  Defer -> ldef y
  Closed d -> lclo d y
  Need e -> lnee e y
  Weak e -> lwea e y

babs t = case t of
  Ze -> Defer
  Su x -> Weak (babs x)
  Pass x -> Closed x
  La t -> case babs t of
    Defer -> Closed (lf "I")
    Closed d -> Closed (Nd (lf "K") d)
    Need e -> e
    Weak e -> Closed (lf "K") ## e
  App x y -> babs x ## babs y

nolam x = (\(Closed d) -> d) $ babs $ debruijn [] x

optim t = case t of
  Nd x y -> go (optim x) (optim y)
  _ -> t
  where
  go (Lf (Basic "I")) q = q
  go p q@(Lf (Basic c)) = case c of
    "I" -> case p of
      Lf (Basic "C") -> lf "T"
      Lf (Basic "B") -> lf "I"
      Nd p1 p2 -> case p1 of
        Lf (Basic "B") -> p2
        Lf (Basic "R") -> Nd (lf "T") p2
        _ -> Nd (Nd p1 p2) q
      _ -> Nd p q
    "T" -> case p of
      Nd (Lf (Basic "B")) (Lf (Basic "C")) -> lf "V"
      _ -> Nd p q
    _ -> Nd p q
  go p q = Nd p q

app01 s x y = maybe (A (L s x) y) snd $ go x where
  go expr = case expr of
    E _ -> Just (False, expr)
    V v -> Just $ if s == v then (True, y) else (False, expr)
    A l r -> do
      (a, l') <- go l
      (b, r') <- go r
      if a && b then Nothing else pure (a || b, A l' r')
    L v t -> if v == s then Just (False, expr) else second (L v) <$> go t

optiApp t = case t of
  A x y -> let
    x' = optiApp x
    y' = optiApp y
    in case x' of
      L s v -> app01 s v y'
      _ -> A x' y'
  L s x -> L s (optiApp x)
  _ -> t

-- Pattern compiler.
rewritePats dcs = \case
  [] -> pure $ V "join#"
  vsxs@((as0, _):_) -> case as0 of
    [] -> pure $ foldr1 (A . L "join#") $ snd <$> vsxs
    _ -> do
      let k = length as0
      n <- get
      put $ n + k
      let vs@(vh:vt) = take k $ (`shows` "#") <$> upFrom n
      cs <- flip mapM vsxs \(a:at, x) -> (a,) <$> foldM (\b (p, v) -> rewriteCase dcs v Tip [(p, b)]) x (zip at vt)
      flip (foldr L) vs <$> rewriteCase dcs vh Tip cs

patEq lit b x y = A (L "join#" $ A (A (A (V "if") (A (A (V "==") lit) b)) x) $ V "join#") y

rewriteCase dcs caseVar tab = \case
  [] -> flush $ V "join#"
  ((v, x):rest) -> go v x rest
  where
  rec = rewriteCase dcs caseVar
  go v x rest = case v of
    PatLit lit -> patEq lit (V caseVar) x <$> rec Tip rest >>= flush
    PatVar s m -> let x' = beta s (V caseVar) x in case m of
      Nothing -> A (L "join#" x') <$> rec Tip rest >>= flush
      Just v' -> go v' x' rest
    PatCon con args -> rec (insertWith (flip (.)) con ((args, x):) tab) rest
  flush onFail = case toAscList tab of
    [] -> pure onFail
    -- TODO: Check rest of `tab` lies in cs.
    (firstC, _):_ -> do
      let cs = dcs ! firstC
      jumpTable <- mapM (\(Constr s ts) -> case mlookup s tab of
          Nothing -> pure $ foldr L (V "join#") $ const "_" <$> ts
          Just f -> rewritePats dcs $ f []
        ) cs
      pure $ A (L "join#" $ foldl A (A (V $ specialCase cs) $ V caseVar) jumpTable) onFail

secondM f (a, b) = (a,) <$> f b
patternCompile dcs t = optiApp $ evalState (go t) 0 where
  go t = case t of
    E _ -> pure t
    V _ -> pure t
    A x y -> liftA2 A (go x) (go y)
    L s x -> L s <$> go x
    Pa vsxs -> mapM (secondM go) vsxs >>= rewritePats dcs

-- Unification and matching.
apply sub t = case t of
  TC v -> t
  TV v -> maybe t id $ lookup v sub
  TAp a b -> TAp (apply sub a) (apply sub b)

(@@) s1 s2 = map (second (apply s1)) s2 ++ s1

occurs s t = case t of
  TC v -> False
  TV v -> s == v
  TAp a b -> occurs s a || occurs s b

varBind s t = case t of
  TC v -> Right [(s, t)]
  TV v -> Right $ if v == s then [] else [(s, t)]
  TAp a b -> if occurs s t then Left "occurs check" else Right [(s, t)]

ufail t u = Left $ ("unify fail: "++) . shows t . (" vs "++) . shows u $ ""

mgu t u = case t of
  TC a -> case u of
    TC b -> if a == b then Right [] else ufail t u
    TV b -> varBind b t
    TAp a b -> ufail t u
  TV a -> varBind a u
  TAp a b -> case u of
    TC b -> ufail t u
    TV b -> varBind b t
    TAp c d -> mgu a c >>= unify b d

unify a b s = (@@ s) <$> mgu (apply s a) (apply s b)

merge s1 s2 = if all (\v -> apply s1 (TV v) == apply s2 (TV v))
  $ map fst s1 `intersect` map fst s2 then Just $ s1 ++ s2 else Nothing

match h t = case h of
  TC a -> case t of
    TC b | a == b -> Just []
    _ -> Nothing
  TV a -> Just [(a, t)]
  TAp a b -> case t of
    TAp c d -> case match a c of
      Nothing -> Nothing
      Just ac -> case match b d of
        Nothing -> Nothing
        Just bd -> merge ac bd
    _ -> Nothing

-- Type inference.
instantiate' t n tab = case t of
  TC s -> ((t, n), tab)
  TV s -> case lookup s tab of
    Nothing -> let va = TV $ show n in ((va, n + 1), (s, va):tab)
    Just v -> ((v, n), tab)
  TAp x y -> let
    ((t1, n1), tab1) = instantiate' x n tab
    ((t2, n2), tab2) = instantiate' y n1 tab1
    in ((TAp t1 t2, n2), tab2)

instantiatePred (Pred s t) ((out, n), tab) = first (first ((:out) . Pred s)) (instantiate' t n tab)

instantiate (Qual ps t) n = first (Qual ps1) $ fst $ instantiate' t n1 tab where
  ((ps1, n1), tab) = foldr instantiatePred (([], n), []) ps

proofApply sub a = case a of
  Proof (Pred cl ty) -> Proof (Pred cl $ apply sub ty)
  A x y -> A (proofApply sub x) (proofApply sub y)
  L s t -> L s $ proofApply sub t
  _ -> a

typeAstSub sub (t, a) = (apply sub t, proofApply sub a)

infer typed loc ast csn@(cs, n) = case ast of
  E x -> Right $ case x of
    Const _ -> ((TC "Int", ast), csn)
    ChrCon _ -> ((TC "Char", ast), csn)
    StrCon _ -> ((TAp (TC "[]") (TC "Char"), ast), csn)
  V s -> maybe (Left $ "undefined: " ++ s) Right
    $ (\t -> ((t, ast), csn)) <$> lookup s loc
    <|> insta <$> mlookup s typed
  A x y -> infer typed loc x (cs, n + 1) >>=
    \((tx, ax), csn1) -> infer typed loc y csn1 >>=
    \((ty, ay), (cs2, n2)) -> unify tx (arr ty va) cs2 >>=
    \cs -> Right ((va, A ax ay), (cs, n2))
  L s x -> first (\(t, a) -> (arr va t, L s a)) <$> infer typed ((s, va):loc) x (cs, n + 1)
  where
  va = TV $ show n
  insta ty = ((ty1, foldl A ast (map Proof preds)), (cs, n1))
    where (Qual preds ty1, n1) = instantiate ty n

findInstance tycl qn@(q, n) p@(Pred cl ty) insts = case insts of
  [] -> let v = '*':show n in Right (((p, v):q, n + 1), V v)
  Instance h name ps _:rest -> case match h ty of
    Nothing -> findInstance tycl qn p rest
    Just subs -> foldM (\(qn1, t) (Pred cl1 ty1) -> second (A t)
      <$> findProof tycl (Pred cl1 $ apply subs ty1) qn1) (qn, V name) ps

findProof tycl pred@(Pred classId t) psn@(ps, n) = case lookup pred ps of
  Nothing -> findInstance tycl psn pred $ case mlookup classId tycl of
    Nothing -> []
    Just (Tycl _ insts) -> insts
  Just s -> Right (psn, V s)

prove' tycl psn a = case a of
  Proof pred -> findProof tycl pred psn
  A x y -> prove' tycl psn x >>= \(psn1, x1) ->
    second (A x1) <$> prove' tycl psn1 y
  L s t -> second (L s) <$> prove' tycl psn t
  _ -> Right (psn, a)

depGraph typed (s, t) (vs, es) = (insert s t vs, foldr go es $ fv [] t) where
  go k ios@(ins, outs) = case lookup k typed of
    Nothing -> (insertWith union k [s] ins, insertWith union s [k] outs)
    Just _ -> ios

depthFirstSearch = (foldl .) \relation st@(visited, sequence) vertex ->
  if vertex `elem` visited then st else second (vertex:)
    $ depthFirstSearch relation (vertex:visited, sequence) (relation vertex)

spanningSearch   = (foldl .) \relation st@(visited, setSequence) vertex ->
  if vertex `elem` visited then st else second ((:setSequence) . (vertex:))
    $ depthFirstSearch relation (vertex:visited, []) (relation vertex)

scc ins outs = spanning . depthFirst where
  depthFirst = snd . depthFirstSearch outs ([], [])
  spanning   = snd . spanningSearch   ins  ([], [])

inferno tycl typed defmap syms = let
  loc = zip syms $ TV . (' ':) <$> syms
  in foldM (\(acc, (subs, n)) s ->
    maybe (Left $ "missing: " ++ s) Right (mlookup s defmap) >>=
    \expr -> infer typed loc expr (subs, n) >>=
    \((t, a), (ms, n1)) -> unify (TV (' ':s)) t ms >>=
    \cs -> Right ((s, (t, a)):acc, (cs, n1))
  ) ([], ([], 0)) syms >>=
  \(stas, (soln, _)) -> mapM id $ (\(s, ta) -> prove tycl s $ typeAstSub soln ta) <$> stas

prove tycl s (t, a) = flip fmap (prove' tycl ([], 0) a) \((ps, _), x) -> let
  applyDicts expr = foldl A expr $ map (V . snd) ps
  in (s, (Qual (map fst ps) t, foldr L (overFree s applyDicts x) $ map snd ps))
inferDefs' tycl defmap (typeTab, lambF) syms = let
  add stas = foldr (\(s, (q, cs)) (tt, f) -> (insert s q tt, f . ((s, cs):))) (typeTab, lambF) stas
  in add <$> inferno tycl typeTab defmap syms
inferDefs tycl defs typed = let
  typeTab = foldr (\(k, (q, _)) -> insert k q) Tip typed
  lambs = second snd <$> typed
  (defmap, graph) = foldr (depGraph typed) (Tip, (Tip, Tip)) defs
  ins k = maybe [] id $ mlookup k $ fst graph
  outs k = maybe [] id $ mlookup k $ snd graph
  in foldM (inferDefs' tycl defmap) (typeTab, (lambs++)) $ scc ins outs $ map fst $ toAscList defmap

dictVars ps n = (zip ps $ map (('*':) . show) $ upFrom n, n + length ps)

inferTypeclasses tycl typed dcs = concat <$> mapM perClass (toAscList tycl) where
  perClass (classId, Tycl sigs insts) = do
    let
      perInstance (Instance ty name ps idefs) = do
        let
          dvs = map snd $ fst $ dictVars ps 0
          perMethod s = do
            let Just expr = mlookup s idefs <|> pure (V $ "{default}" ++ s)
            (ta, (sub, n)) <- infer typed [] (patternCompile dcs expr) ([], 0)
            let
              (tx, ax) = typeAstSub sub ta
-- e.g. qc = Eq a => a -> a -> Bool
-- We instantiate: Eq a1 => a1 -> a1 -> Bool.
              Just qc = mlookup s typed
              (Qual [Pred _ headT] tc, n1) = instantiate qc n
-- Mix the predicates `ps` with the type of `headT`, applying a
-- substitution such as (a1, [a]) so the variable names match.
-- e.g. Eq a => [a] -> [a] -> Bool
              Just subc = match headT ty
              (Qual ps2 t2, n2) = instantiate (Qual ps $ apply subc tc) n1
            case match tx t2 of
              Nothing -> Left "class/instance type conflict"
              Just subx -> do
                ((ps3, _), tr) <- prove' tycl (dictVars ps2 0) (proofApply subx ax)
                if length ps2 /= length ps3
                  then Left $ ("want context: "++) . (foldr (.) id $ shows . fst <$> ps3) $ name
                  else pure tr
        ms <- mapM perMethod sigs
        pure (name, flip (foldr L) dvs $ L "@" $ foldl A (V "@") ms)
    mapM perInstance insts

untangle s = case fst <$> program s of
  Left e -> Left $ "parse error: " ++ e
  Right prog -> case foldr ($) (Neat Tip [] prims Tip [] []) $ primAdts ++ prog of
    Neat tycl defs typed dcs ffis exs -> do
      (qs, lambF) <- inferDefs tycl (second (patternCompile dcs) <$> defs) typed
      mets <- inferTypeclasses tycl qs dcs
      pure ((qs, lambF mets), (ffis, exs))

optiComb' (subs, combs) (s, lamb) = let
  gosub t = case t of
    LfVar v -> maybe t id $ lookup v subs
    Nd a b -> Nd (gosub a) (gosub b)
    _ -> t
  c = optim $ gosub $ nolam $ optiApp lamb
  combs' = combs . ((s, c):)
  in case c of
    Lf (Basic _) -> ((s, c):subs, combs')
    LfVar v -> if v == s then (subs, combs . ((s, Nd (lf "Y") (lf "I")):)) else ((s, gosub c):subs, combs')
    _ -> (subs, combs')
optiComb lambs = ($[]) . snd $ foldl optiComb' ([], id) lambs

instance Show Type where
  showsPrec _ = \case
    TC s -> (s++)
    TV s -> (s++)
    TAp (TAp (TC "->") a) b -> showParen True $ shows a . (" -> "++) . shows b
    TAp a b -> showParen True $ shows a . (' ':) . shows b
instance Show Pred where
  showsPrec _ (Pred s t) = (s++) . (' ':) . shows t . (" => "++)
instance Show Qual where
  showsPrec _ (Qual ps t) = foldr (.) id (map shows ps) . shows t
instance Show Extra where
  showsPrec _ = \case
    Basic s -> (s++)
    Const i -> shows i
    ChrCon c -> ('\'':) . (c:) . ('\'':)
    StrCon s -> ('"':) . (s++) . ('"':)
instance Show Pat where
  showsPrec _ = \case
    PatLit e -> shows e
    PatVar s mp -> (s++) . maybe id ((('@':) .) . shows) mp
    PatCon s ps -> (s++) . foldr (.) id (((' ':) .) . shows <$> ps)

showVar s@(h:_) = showParen (elem h ":!#$%&*+./<=>?@\\^|-~") (s++)

instance Show Ast where
  showsPrec prec = \case
    E e -> shows e
    V s -> showVar s
    A x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y
    L s t -> showParen True $ ('\\':) . (s++) . (" -> "++) . shows t
    Pa vsts -> ('\\':) . showParen True (foldr (.) id $ intersperse (';':) $ map (\(vs, t) -> foldr (.) id (intersperse (' ':) $ map (showParen True . shows) vs) . (" -> "++) . shows t) vsts)
    Proof p -> ("{Proof "++) . shows p . ("}"++)

instance Show IntTree where
  showsPrec prec = \case
    LfVar s -> showVar s
    Lf extra -> shows extra
    Nd x y -> showParen (1 <= prec) $ shows x . (' ':) . showsPrec 1 y

disasm (s, t) = (s++) . (" = "++) . shows t . (";\n"++)

dumpCombs s = case untangle s of
  Left err -> err
  Right ((_, lambs), _) -> foldr ($) [] $ map disasm $ optiComb lambs

dumpLambs s = case untangle s of
  Left err -> err
  Right ((_, lambs), _) -> foldr ($) [] $
    (\(s, t) -> (s++) . (" = "++) . shows t . ('\n':)) <$> lambs

dumpTypes s = case untangle s of
  Left err -> err
  Right ((typed, _), _) -> ($ "") $ foldr (.) id $
    map (\(s, q) -> (s++) . (" :: "++) . shows q . ('\n':)) $ toAscList typed

appCell (hp, bs) x y = (hp, (hp + 2, bs . (x:) . (y:)))

enc tab mem = \case
  Lf n -> case n of
    Basic c -> (comEnum c, mem)
    Const c -> appCell mem (comEnum "NUM") c
    ChrCon c -> appCell mem (comEnum "NUM") $ ord c
    StrCon s -> enc tab mem $ foldr (\h t -> Nd (Nd (lf "CONS") (Lf $ ChrCon h)) t) (lf "K") s
  LfVar s -> maybe (error $ "resolve " ++ s) (, mem) $ mlookup s tab
  Nd x y -> let
    (xAddr, mem') = enc tab mem x
    (yAddr, mem'') = enc tab mem' y
    in appCell mem'' xAddr yAddr

asm combs = tabmem where
  tabmem = foldl (\(as, m) (s, t) -> let (p, m') = enc (fst tabmem) m t
    in (insert s p as, m')) (Tip, (128, id)) combs

-- Code generation.
argList t = case t of
  TC s -> [TC s]
  TV s -> [TV s]
  TAp (TC "IO") (TC u) -> [TC u]
  TAp (TAp (TC "->") x) y -> x : argList y

cTypeName (TC "()") = "void"
cTypeName (TC "Int") = "int"
cTypeName (TC "Char") = "int"

ffiDeclare (name, t) = let tys = argList t in concat
  [cTypeName $ last tys, " ", name, "(", intercalate "," $ cTypeName <$> init tys, ");\n"]

ffiArgs n t = case t of
  TC s -> ("", ((True, s), n))
  TAp (TC "IO") (TC u) -> ("", ((False, u), n))
  TAp (TAp (TC "->") x) y -> first (((if 3 <= n then ", " else "") ++ "num(" ++ shows n ")") ++) $ ffiArgs (n + 1) y

ffiDefine n ffis = case ffis of
  [] -> id
  (name, t):xt -> let
    (args, ((isPure, ret), count)) = ffiArgs 2 t
    lazyn = ("lazy2(" ++) . shows (if isPure then count - 1 else count + 1) . (", " ++)
    cont tgt = if isPure then ("_I, "++) . tgt else ("app(arg("++) . shows (count + 1) . ("), "++) . tgt . ("), arg("++) . shows count . (")"++)
    longDistanceCall = (name++) . ("("++) . (args++) . ("); "++) . lazyn
    in ("case " ++) . shows n . (": " ++) . if ret == "()"
      then longDistanceCall . cont ("_K"++) . ("); break;"++) . ffiDefine (n - 1) xt
      else ("{u r = "++) . longDistanceCall . cont ("app(_NUM, r)" ++) . ("); break;}\n"++) . ffiDefine (n - 1) xt

genMain n = "int main(int argc,char**argv){env_argc=argc;env_argv=argv;rts_init();rts_reduce(" ++ shows n ");return 0;}\n"

compile s = case untangle s of
  Left err -> err
  Right ((_, lambs), (ffis, exs)) -> let
    (tab, (_, memF)) = (asm $ optiComb lambs)
    mem = memF []
    in ("typedef unsigned u;\n"++)
    . ("enum{_UNDEFINED=0,"++)
    . foldr (.) id (map (\(s, _) -> ('_':) . (s++) . (',':)) comdefs)
    . ("};\n"++)
    . ("static const u prog[]={" ++)
    . foldr (.) id (map (\n -> shows n . (',':)) mem)
    . ("};\nstatic const u prog_size="++) . shows (length mem) . (";\n"++)
    . ("static u root[]={" ++)
    . foldr (\(x, y) f -> maybe undefined shows (mlookup y tab) . (", " ++) . f) id exs
    . ("0};\n" ++)
    . (preamble++)
    . (libc++)
    . (concatMap ffiDeclare ffis ++)
    . ("static void foreign(u n) {\n  switch(n) {\n" ++)
    . ffiDefine (length ffis - 1) ffis
    . ("\n  }\n}\n" ++)
    . runFun
    . (foldr (.) id $ zipWith (\p n -> (("EXPORT(f" ++ shows n ", \"" ++ fst p ++ "\", " ++ shows n ")\n") ++)) exs (upFrom 0))
    $ maybe "" genMain (mlookup "main" tab)

-- Main VM loop.
comdefsrc = [r|
F x = "foreign(num(1));"
Y x = x "sp[1]"
Q x y z = z(y x)
S x y z = x z(y z)
B x y z = x (y z)
C x y z = x z y
R x y z = y z x
V x y z = z x y
T x y = y x
K x y = "_I" x
I x = "sp[1] = arg(1); sp++;"
CONS x y z w = w x y
NUM x y = y "sp[1]"
ADD x y = "_NUM" "num(1) + num(2)"
SUB x y = "_NUM" "num(1) - num(2)"
MUL x y = "_NUM" "num(1) * num(2)"
DIV x y = "_NUM" "num(1) / num(2)"
MOD x y = "_NUM" "num(1) % num(2)"
EQ x y = "num(1) == num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
LE x y = "num(1) <= num(2) ? lazy2(2, _I, _K) : lazy2(2, _K, _I);"
REF x y = y "sp[1]"
NEWREF x y z = z ("_REF" x) y
READREF x y z = z "num(1)" y
WRITEREF x y z w = w "((mem[arg(2) + 1] = arg(1)), _K)" z
END = "return;"
|]
comb = (,) <$> conId <*> ((,) <$> many varId <*> (res "=" *> combExpr))
combExpr = foldl1 A <$> some
  (V <$> varId <|> E . StrCon <$> lexeme tokStr <|> paren combExpr)
comdefs = case parse (lexemePrelude *> braceSep comb <* eof) comdefsrc of
  Left e -> error e
  Right (cs, _) -> cs
comEnum s = maybe (error s) id $ lookup s $ zip (fst <$> comdefs) (upFrom 1)
comName i = maybe undefined id $ lookup i $ zip (upFrom 1) (fst <$> comdefs)

preamble = [r|#define EXPORT(f, sym, n) void f() asm(sym) __attribute__((export_name(sym))); void f(){rts_reduce(root[n]);}
void *malloc(unsigned long);
enum { FORWARD = 127, REDUCING = 126 };
enum { TOP = 1<<24 };
static u *mem, *altmem, *sp, *spTop, hp;
static inline u isAddr(u n) { return n>=128; }
static u evac(u n) {
  if (!isAddr(n)) return n;
  u x = mem[n];
  while (isAddr(x) && mem[x] == _T) {
    mem[n] = mem[n + 1];
    mem[n + 1] = mem[x + 1];
    x = mem[n];
  }
  if (isAddr(x) && mem[x] == _K) {
    mem[n + 1] = mem[x + 1];
    x = mem[n] = _I;
  }
  u y = mem[n + 1];
  switch(x) {
    case FORWARD: return y;
    case REDUCING:
      mem[n] = FORWARD;
      mem[n + 1] = hp;
      hp += 2;
      return mem[n + 1];
    case _I:
      mem[n] = REDUCING;
      y = evac(y);
      if (mem[n] == FORWARD) {
        altmem[mem[n + 1]] = _I;
        altmem[mem[n + 1] + 1] = y;
      } else {
        mem[n] = FORWARD;
        mem[n + 1] = y;
      }
      return mem[n + 1];
    default: break;
  }
  u z = hp;
  hp += 2;
  mem[n] = FORWARD;
  mem[n + 1] = z;
  altmem[z] = x;
  altmem[z + 1] = y;
  return z;
}

static void gc() {
  hp = 128;
  u di = hp;
  sp = altmem + TOP - 1;
  for(u *r = root; *r; r++) *r = evac(*r);
  *sp = evac(*spTop);
  while (di < hp) {
    u x = altmem[di] = evac(altmem[di]);
    di++;
    if (x != _NUM) altmem[di] = evac(altmem[di]);
    di++;
  }
  spTop = sp;
  u *tmp = mem;
  mem = altmem;
  altmem = tmp;
}

static inline u app(u f, u x) { mem[hp] = f; mem[hp + 1] = x; return (hp += 2) - 2; }
static inline u arg(u n) { return mem[sp [n] + 1]; }
static inline int num(u n) { return mem[arg(n) + 1]; }
static inline void lazy2(u height, u f, u x) {
  u *p = mem + sp[height];
  *p = f;
  *++p = x;
  sp += height - 1;
  *sp = f;
}
static void lazy3(u height,u x1,u x2,u x3){u*p=mem+sp[height];sp[height-1]=*p=app(x1,x2);*++p=x3;*(sp+=height-2)=x1;}
|]

runFun = ([r|static void run() {
  for(;;) {
    if (mem + hp > sp - 8) gc();
    u x = *sp;
    if (isAddr(x)) *--sp = mem[x]; else switch(x) {
|]++)
  . foldr (.) id (genComb <$> comdefs)
  . ([r|
    }
  }
}

void rts_init() {
  mem = malloc(TOP * sizeof(u)); altmem = malloc(TOP * sizeof(u));
  hp = 128;
  for (u i = 0; i < prog_size; i++) mem[hp++] = prog[i];
  spTop = mem + TOP - 1;
}

void rts_reduce(u n) {
  *(sp = spTop) = app(app(n, _UNDEFINED), _END);
  run();
}
|]++)

genArg m a = case a of
  V s -> ("arg("++) . (maybe undefined shows $ lookup s m) . (')':)
  E (StrCon s) -> (s++)
  A x y -> ("app("++) . genArg m x . (',':) . genArg m y . (')':)
genArgs m as = foldl1 (.) $ map (\a -> (","++) . genArg m a) as
genComb (s, (args, body)) = let
  argc = ('(':) . shows (length args)
  m = zip args $ upFrom 1
  in ("case _"++) . (s++) . (':':) . (case body of
    A (A x y) z -> ("lazy3"++) . argc . genArgs m [x, y, z] . (");"++)
    A x y -> ("lazy2"++) . argc . genArgs m [x, y] . (");"++)
    E (StrCon s) -> (s++)
  ) . ("break;\n"++)

main = getArgs >>= \case
  "comb":_ -> interact dumpCombs
  "lamb":_ -> interact dumpLambs
  "type":_ -> interact dumpTypes
  _ -> interact compile
  where
  getArg' k n = getArgChar n k >>= \c -> if ord c == 0 then pure [] else (c:) <$> getArg' (k + 1) n
  getArgs = getArgCount >>= \n -> mapM (getArg' 0) (take (n - 1) $ upFrom 1)

iterate f x = x : iterate f (f x)
takeWhile _ [] = []
takeWhile p xs@(x:xt)
  | p x  = x : takeWhile p xt
  | True = []

class Enum a where
  succ           :: a -> a
  pred           :: a -> a
  toEnum         :: Int -> a
  fromEnum       :: a -> Int
  enumFrom       :: a -> [a]
  enumFromTo     :: a -> a -> [a]
instance Enum Int where
  succ = (+1)
  pred = (+(0-1))
  toEnum = id
  fromEnum = id
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo
instance Enum Char where
  succ = chr . (+1) . ord
  pred = chr . (+(0-1)) . ord
  toEnum = chr
  fromEnum = ord
  enumFrom = iterate succ
  enumFromTo lo hi = takeWhile (<= hi) $ enumFrom lo

(+) = intAdd
(-) = intSub
(*) = intMul
div = intDiv
mod = intMod

Ben Lynn blynn@cs.stanford.edu 💡